

WizFi630S Hardware Design Guide

(Version 1.0.0)

© 2019 WIZnet Co., Ltd. All Rights Reserved.

For more information, please visit our website at http://www.wiznet.io/

Document Revision History

Date	Revision	Changes
2019-11-14	1.0	Release
	Line	https://www.het.inet.

1. Introduct	tion5
2. Overview	
3. Pin Desc	ription5
3.1	Pin map5
3.3	Pin layout
4. Recomm	ended Circuit Diagram8
4.1	Basic schematic Design of the WizFi630S
4.2	USB Host Schematic Design
4.3	LED Schematic Design
4.4	Ethernet Schematic Design 10
4.5	Switch Schematic Design 11
4.6	UARTO Micro USB Schematic Design11
5. Power Su	ıpply 12
5.1	Power Supply Requirements13
6. Power Su	ıpply13
6.1	Dimensions

WIZnet

🚺 Important Notice

WIZnet reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time, and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders, and should verify that such information is current and complete. All products are sold subject to WIZnet's terms and conditions of sale, supplied at the time of order acknowledgment. Information relating to device applications, and the like, is intended as suggestion only and may be superseded by updates. It is the customer's responsibility to ensure that their application meets their own specifications. WIZnet makes no representation and gives no warranty relating to advice, support or customer product design.

WIZnet assumes no responsibilities or liabilities for the use of any of its products, conveys no license or title under any patent, copyright or mask work rights to these products, and makes no representations or warranties that these products are free from patent, copyright or mask work infringement, unless otherwise specified.

WIZnet products are not intended for use in life support systems/appliances or any systems where product malfunction can reasonably be expected to result in personal injury, death, severe property damage or environmental damage. WIZnet customers using or selling WIZnet products for use in such applications do so at their own risk and agree to fully indemnify WIZnet for any damages resulting from such use.

All trademarks are the property of their respective owners.

WIZnet

1. Introduction

This document has been prepared to better help the design-in process of WizFi630S. Please utilize our forum and website for in depth technical support. We greatly welcome and value your feedback and thank you for your interest in WizFi630S.

WIZnetForum WIZnetGithub WIZwiki

2. Overview

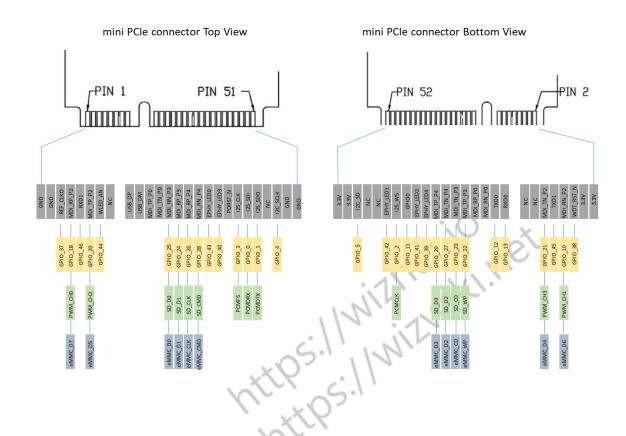
. wizFi630S. Please use this guide as a reference since this document will suggest some hardware solutions with precautions but the suggested schematic and solutions will not be applied in every cases.

3. Pin Description

Pin map 3.1

The WizFi630S supports below pin-map based on default firmware.

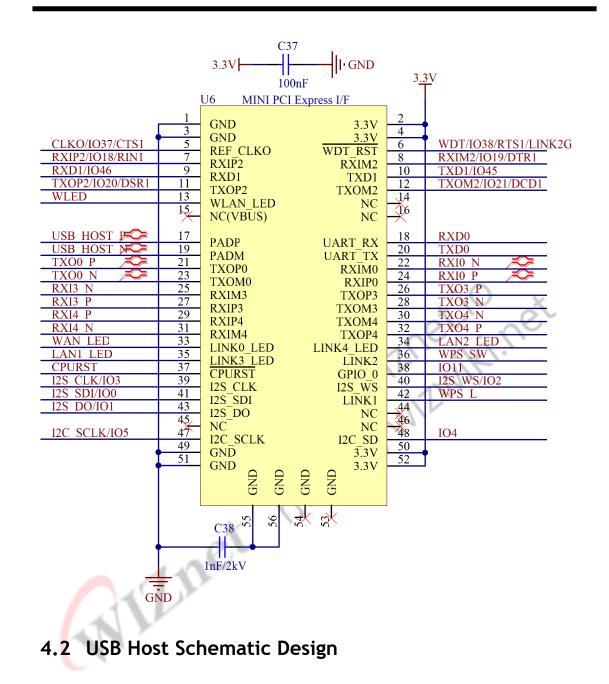
No	Туре	Name	Shared	Description
1		GND		


2		3.3V				
3		GND				
4		3.3V				
5	I/O, IPD	REF_CLKO	GPIO#37	Will be provided as UART1 CTS-N		
6	I/O, IPD	WDT_RST_N	GPIO#38	Will be provided as UART1 RTS-N		
7	I/O, IPD	RXIP2	GPIO#18	Reserved		
8	I/O, IPD	RXIM2	GPIO#19	Reserved		
9	I/O, IPD	RxD1	GPIO#46	UART1 RXD		
10	I/O, IPD	TxD1	GPIO#45	UART1 TXD		
11	I/O, IPD	TXOP2	GPIO#20	Reserved		
12	I/O, IPD	TXOM2	GPIO#21	Reserved		
13	0	WLAN_LED	GPIO#44	Wireless Init On		
14		NC				
15		NC(VBUS)		USB OTG VBUS pin in WizFi630		
16		NC	1	12.12.		
17	1/0	USB_PADP	S.	USB OTG data pin Data+		
18	I/O, IPD	UART_RX	GPIO#13	UARTO RxD		
19	1/0	USB_PADM		USB OTG data pin Data-		
20	I/O, IPD	UART_TX	GPIO#12	UARTO TxD		
21	0	TXOP0		10/100 PHY Port #0 TXP		
22	-	RXIMO		10/100 PHY Port #0 RXN		
23	0	ТХОМ0		10/100 PHY Port #0 TXN		
24	L I	I RXIPO		10/100 PHY Port #0 RXP		
25	-	RXIM3	GPIO#25	10/100 PHY Port #3 RXN		
26	0	TXOP3	GPIO#22	10/100 PHY Port #3 TXP		
27	Ι	RXIP3	GPIO#24	10/100 PHY Port #3 RXP		
28	0	TXOM3	TXOM3 GPIO#23 10/100 PHY Port			
29	Ι	RXIP4	GPIO#26	10/100 PHY Port #4 RXP		
30	0	TXOM4	GPIO#27	10/100 PHY Port #4 TXN		
31	Ι	RXIM4	GPIO#28	10/100 PHY Port #4 RXN		
32	0	TXOP4	GPIO#29	10/100 PHY Port #4 TXP		
33	0	LINK0_LED	GPIO#43	LAN port 0 Link LED		
34	0	LINK4_LED	GPIO#39	LAN port 4 Link LED		
35	0	LINK3_LED	GPIO#40	LAN port 3 Link LED		

WIZnet

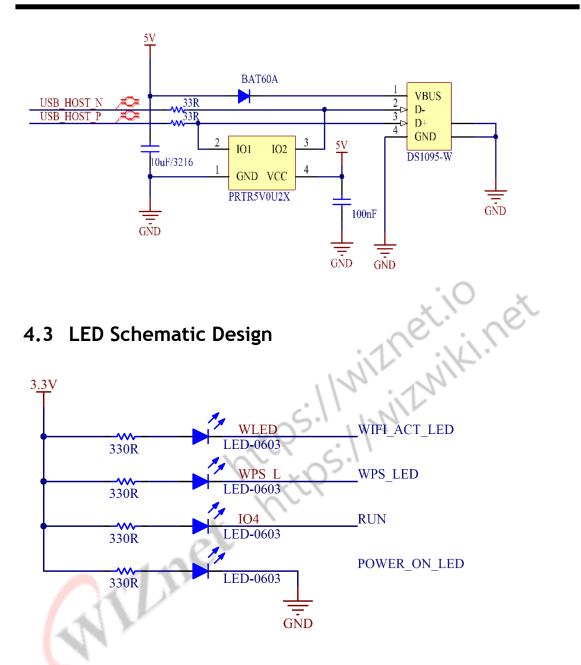
36	I/O, IPD	LINK2	GPIO#41 WPS Button Push			
37	I, IPU	CPURST_N				
38	I/O, IPD	GPIO_0	GPIO#11	Reset Button Push		
39	I/O, IPD	I2S_CLK	GPIO#3	General Purpose Output LED		
40	I/O, IPD	I2S_WS	GPIO#2	General Purpose Input Switch SW1-1		
41	I/O, IPD	I2S_SDI	GPIO#0	General Purpose Output LED		
42	I/O, IPD	LINK1	GPIO#42	WPS LED		
43		I2S_DO	GPIO#1	GPIO		
44		NC				
45		NC				
46		NC		· • • •		
47	I/O, IPD	I2C_SCLK	GPIO#4	General Purpose Input Switch SW1-2		
48	I/O, IPD	I2C_SD	GPIO#5	RUN LED		
49		GND				
50		3.3V	1 Par Alt			
51		GND	S.	L'INTE		
52		3.3V	xQ'			
All net https.						

3.3 Pin layout

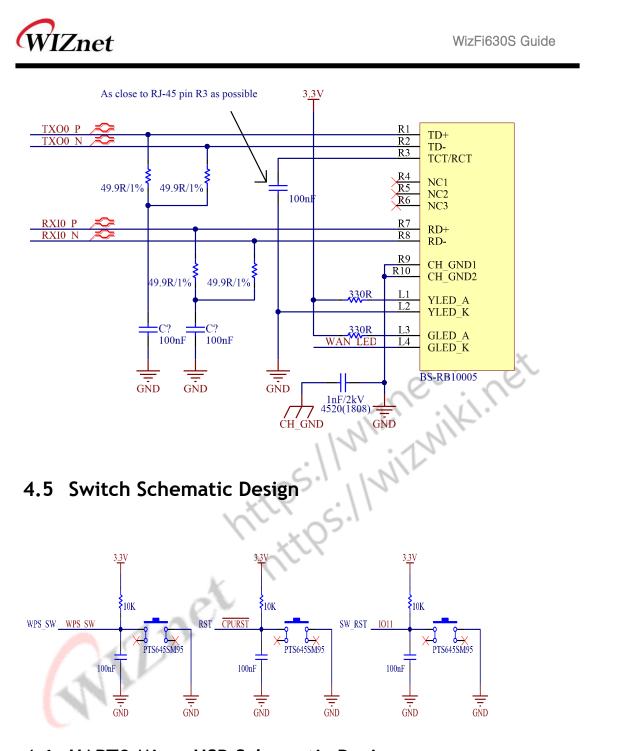


4. Recommended Circuit Diagram

4.1 Basic schematic Design of the WizFi630S


When designing the schematic, the USB HOST line (PADP & PADM) should be paired with the Ethernet line P & M (ex: TXOP0, TXOM0). C37 must be close to the 3.3V and connecting C38 to the Mini PCI Express port will decrease noise.

We recommend pairing the USB HOST P and N line, and also place the diode as shown below for ESD protection

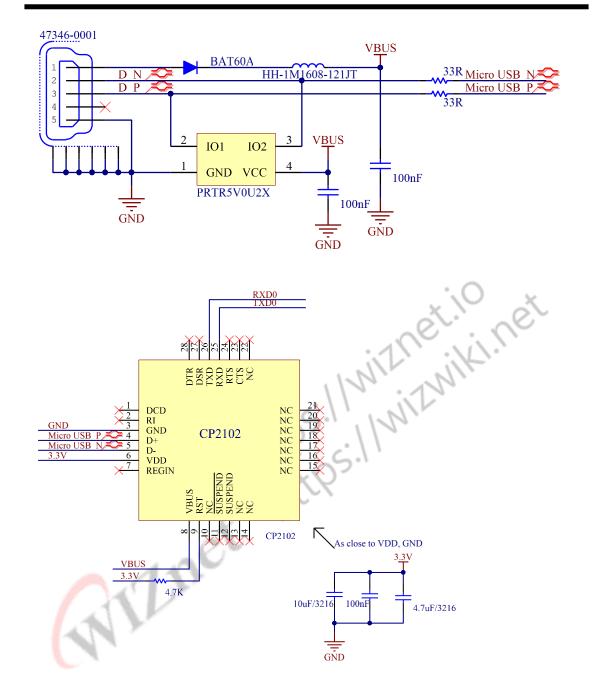


4.4 Ethernet Schematic Design

We also recommend paring the P and N line for Ethernet schematic, and do not place R, L, C, other sign lines below the RJ-45 schematic (especially not below the pair line).

The Center-Tap of WizFi630S connects to GND whereas the Center-Tap of WizFi630A operates in 1.8V \sim 3.3V.

Another recommendation is to isolate the CH_GND and GND with a 1nF/2kV capacity.



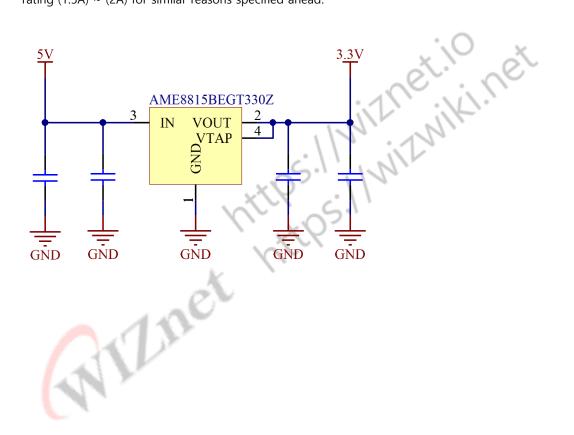
4.6 UARTO Micro USB Schematic Design

Micro USB P should be paired with N line, and we recommend placing the diode as shown below for ESD protection.

 $\ensuremath{\mathbb{C}}$ Copyright 2019 WIZnet Co., Ltd. All rights reserved.

5. Power Supply

Power supply is one of the critical parts in the design stage that will affect the performance so please refer to the guidelines below.


WIZnet

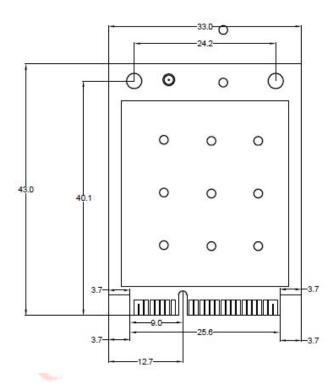
5.1 Power Supply Requirements

Туре	Description
Voltage Rating	DC 3.3V
Current Rating	1A

Caution

You must not exceed the voltage rating of DC 3.3V, otherwise WizFi630S will not operate as designed and could cause damage to the device. Also, please design with at least 1.5 or 2 times more current rating $(1.5A) \sim (2A)$ for similar reasons specified ahead.

6. Power Supply


Refer to the Mini PCIe socket datasheet since WizFi630S uses a Mini PCIe connector.

st.10 net

6.1 Dimensions

Dimensions (mm)	Length	Width	Height	Hole	HOLE	HOLE	PCB
				Width	Height	Φ	Thickness
	43	33	3.8	24.2	3	2.5	1.0
	Tolerance +/- 0.1mm						

