

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone:

+86-755-26648640

Fax: Website: +86-755-26648637 www.cga-cert.com

Report Template Version: V03

Report Template Revision Date: Mar.1st, 2017

Test Report

Report No.:

CQASZ20190700562E-01

Applicant:

WIZNET CO.,LTD

Address of Applicant:

5F Humax Village,216 Hwangsaeul-ro, Bundang-gu, Seongnam-si, Gyeonggi-

Do.Korea

Manufacturer:

Shenzhen Yunlink Technology CO., Ltd

Address of

B3 Building, An'le Industiral Zone, Hangcheng Road, Gushu, Xixiang Towm,

Manufacturer:

Baoan District, Shenzhen City, Guangdong, P.R.China

Factory:

Shenzhen Yunlink Technology CO., Ltd

Address of Factory:

B3 Building, An'le Industiral Zone, Hangcheng Road, Gushu, Xixiang Towm,

Baoan District, Shenzhen City, Guangdong, P.R.China

Equipment Under Test (EUT):

Product:

WiFi Module

Model No.:

WizFi630S

Brand Name:

Wiznet

FCC ID:

2AKKWWIZFI630S

Standards:

47 CFR Part 15, Subpart C

Date of Test:

2019-06-22 to 2019-07-08

Date of Issue:

2019-07-08

Test Result:

PASS*

Tested By:

Martin Lee

martin Lee

10001/L

(Aaron Ma)

Approved By:

Reviewed By:

Haron Ma)

(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: CQASZ20190700562E-01

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190700562E-01	Rev.01	Initial report	2019-07-08

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	N/A
Conducted Peak & Average Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013 PAS	

Note: The product only provides DC 3.3v power supply, So there is no need for AC Power Line Conducted Emission test.



Page

3 Contents

1	VEF	RSION	2
2	TES	ST SUMMARY	3
3	CO	NTENTS	4
4		NERAL INFORMATION	
4			
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF EUT	
	4.3 4.4	DUTY CYCLE DESCRIPTION OF SUPPORT UNITS	
	4.4	TEST LOCATION	
	4.6	TEST FACILITY	
	4.7	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	4.8	DEVIATION FROM STANDARDS	
	4.9	ABNORMALITIES FROM STANDARD CONDITIONS	11
	4.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.11	EQUIPMENT LIST	12
5	TES	ST RESULTS AND MEASUREMENT DATA	13
	5.1	ANTENNA REQUIREMENT	13
	5.2	CONDUCTED PEAK OUTPUT POWER	
	5.3	6DB OCCUPY BANDWIDTH	16
	5.4	Power Spectral Density	26
	5.5	RADIATED SPURIOUS EMISSIONS	
	5.5.		
	5.5.		
	5.6	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
6	PHO	OTOGRAPHS - EUT TEST SETUP	42
	6.1	RADIATED SPURIOUS EMISSION	42
7	PH	OTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	43

Report No.: CQASZ20190700562E-01

4 General Information

4.1 Client Information

Applicant:	WIZNET CO.,LTD		
Address of Applicant:	5F Humax Village,216 Hwangsaeul-ro,Bundang-gu,Seongnam-si,Gyeonggi-Do,Korea		
Manufacturer:	turer: Shenzhen Yunlink Technology CO., Ltd		
Address of Manufacturer: B3 Building, An'le Industiral Zone, Hangcheng Road, Gushu, Xixiang Towm, Baoan District Shenzhen City, Guangdong, P.R.China			

4.2 General Description of EUT

4.2 Gener	ai Descriptio	Description of EUI				
Product Name:	WiFi Module	WiFi Module				
Model No.:	WizFi630S	WizFi630S				
Trade Mark:	Wiznet					
Type of Modulation:	EEE 802.11b mo IEEE 802.11g mo IEEE 802.11n H7 IEEE 802.11n H7	ode: OFDM (BPS 20 MHz mode:	SK/QPSK/16QA OFDM (BPSK/C	PSK/16QAM/64	,	
Channel			OI DIVI (DE SIVE	2F SIV TOQAW/04	QAIVI)	
Spacing:	IEEE 802.11b/g/r	n(HT20):20MHz				
	IEEE 802.11n(H)	T40):40MHz				1-1
Operation Frequency:		IEEE 80	2.11b;IEEE 802	.11g;IEEE 802.1	1n HT20	
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	1	2412	6	2437	11	2462
	2	2417	7	2442		<u> </u>
	3	2422	8	2447		
	5	2427	9	2452		
] 5	2432	10	2457		1
			IEEE 802	.11n HT40		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	3	2422	6	2437	9	2452
	4	2427	7	2442		
	5	2432	8	2447		
Antenna Type:	Rod antenna					
antenna gain	3.2dBi					
Power Supply:	DC 3.3V					

Report No.: CQASZ20190700562E-01

	IEEE 80	2.11b;IEEE 802	.11g;IEEE 802.1	1n HT20	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462
2	2417	7	2442		
3	2422	8	2447		
4	2427	9	2452		
5	2432	10	2457		
	IEEE 802.11n HT40				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452
4	2427	7	2442		
5	2432	8	2447		

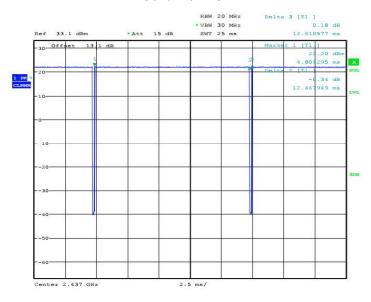
For 802.11b/g/n (HT20,HT40):

_					
	Test mode	Low Channel	Middle Channel	High Channel	
	IEEE 802.11b;IEEE 802.11g;IEEE 802.11n HT20	2412MHz	2437MHz	2462MHz	
	IEEE 802.11n HT40	2422MHz	2437MHz	2452MHz	

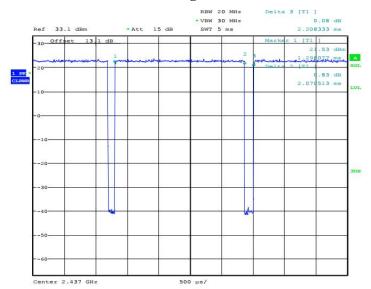
Note:

- 1. Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.
- 2.In radiated measurement, the EUT had been pre-scan on the positioned of each 3 axis(X,Y,Z), the worst case was found when positioned on X-plane.

Report No.: CQASZ20190700562E-01

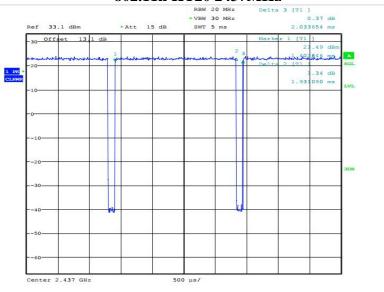

4.3 Duty Cycle

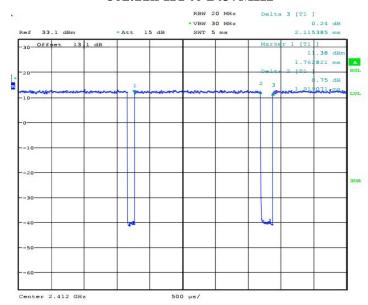
Temperature	25℃	Relative Humidity	55%	Test Voltage	DC 3.3V
Mode	Fre(MHz)	Duty Cycle		Duty F	Factor
802.11b	2437	98.87%		0.05	
802.11g	2437	93.76%		0.2	28
802.11n HT20	2437	94.96%		0.2	22
802.11n HT40	2437	91.86%		0.3	37



Report No.: CQASZ20190700562E-01

802.11b 2437MHz


802.11g 2437MHz



Report No.: CQASZ20190700562E-01

802.11n HT20 2437MHz

802.11n HT40 2437MHz

Report No.: CQASZ20190700562E-01

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
notebook	ASUS	VM510L	Provide by lab	DOC

4.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

ISED Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10Other Information Requested by the Customer

None.

Report No.: CQASZ20190700562E-01

4.11Equipment List

	ı		T		
Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
Preamplifier	MITEQ	AFS4-00010300-18-10P- 4	CQA-035	2018/9/26	2019/9/25
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2018/11/2	2019/11/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2018/9/26	2019/9/25
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/26	2019/9/25
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2018/9/26	2019/9/25
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2018/9/26	2019/9/25
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2018/9/26	2019/9/25
EMI Test Receiver	R&S	ESPI3	CQA-013	2018/9/26	2019/9/25
LISN	R&S	ENV216	CQA-003	2018/11/5	2019/11/4
Coaxial cable	CQA	N/A	CQA-C009	2018/9/26	2019/9/25

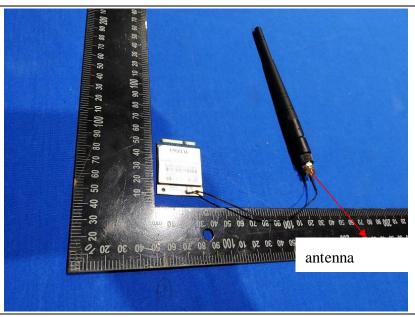
Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with antenna gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of antenna gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the antenna gain of the antenna exceeds 6 dBi.

EUT Antenna:

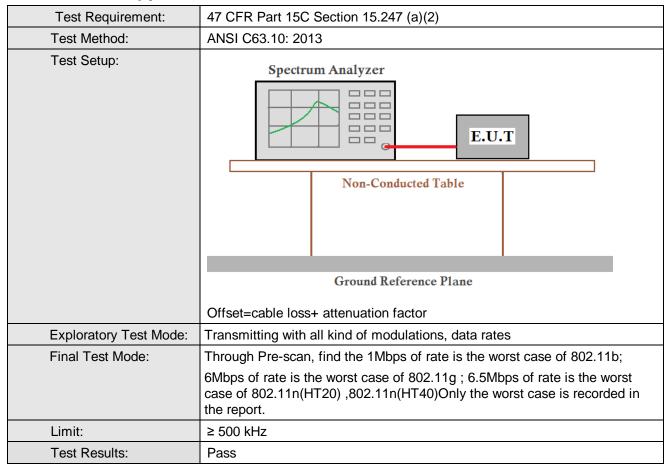
The antenna is a Rod antenna. The best case gain of the Antenna Gain: 3.2dBi;

Report No.: CQASZ20190700562E-01

5.2 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10: 2013		
Test Setup:	EUT Power Meter		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;		
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20/HT40); Only the worst case is recorded in the report.		
Limit:	30dBm		
Test Results:	Pass		

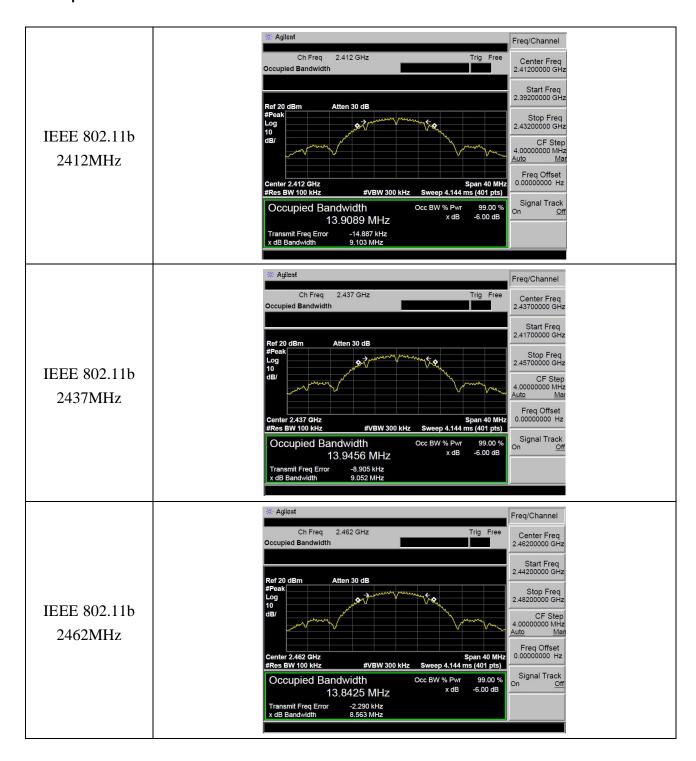
Report No.: CQASZ20190700562E-01


Measurement Data

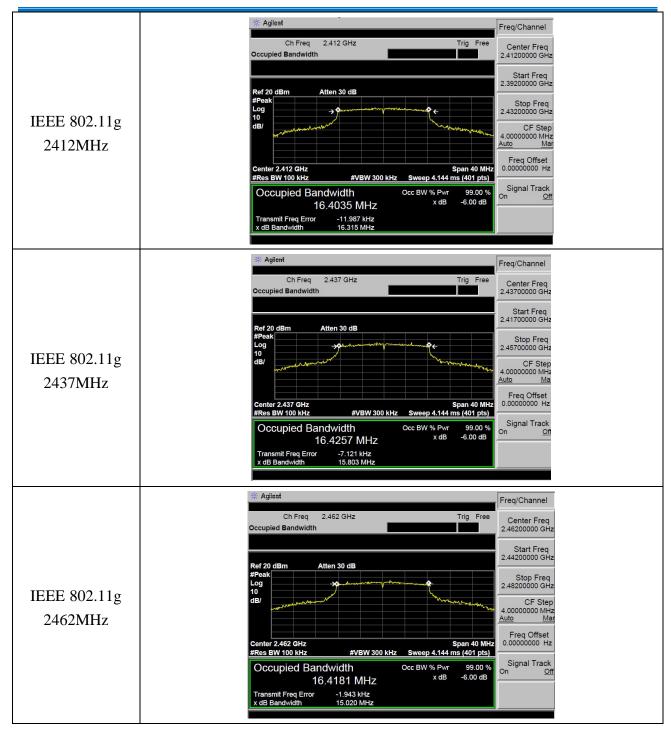
Test Mode	СН	Conducted Power (dBm)	Limit (dBm)
IEEE 000 11 b	CH1	16.01	30
IEEE 802.11 b	СН6	16.05	30
	CH11	15.41	30
	CH1	11.54	30
IEEE 802.11 g	СН6	11.72	30
	CH11	11.54	30
	CH1	8.09	30
IEEE 802.11 n HT20	СН6	8.32	30
	CH11	8.81	30
	СН3	5.47	30
IEEE 802.11 n HT40	СН6	5.22	30
	СН9	5.34	30
Conclusion: PASS			

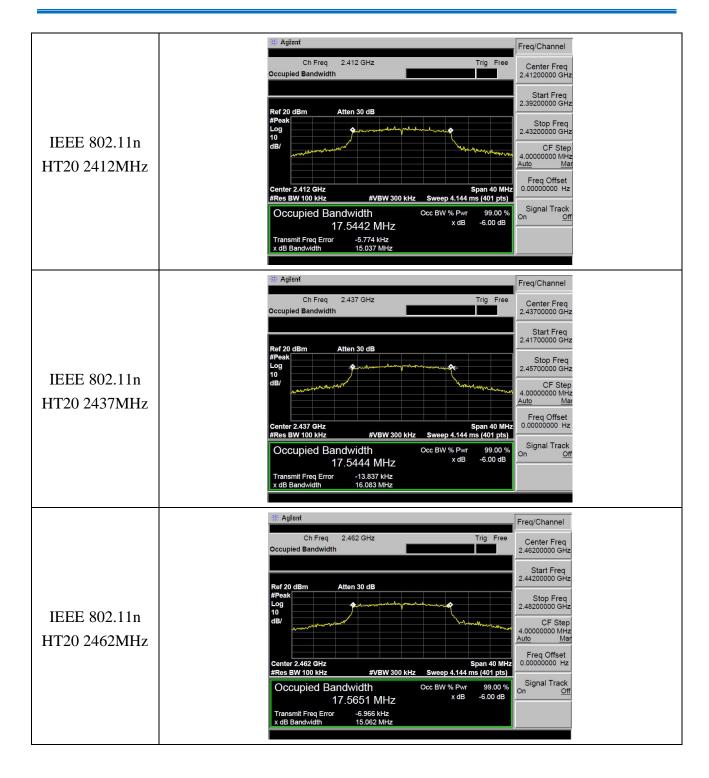
Report No.: CQASZ20190700562E-01

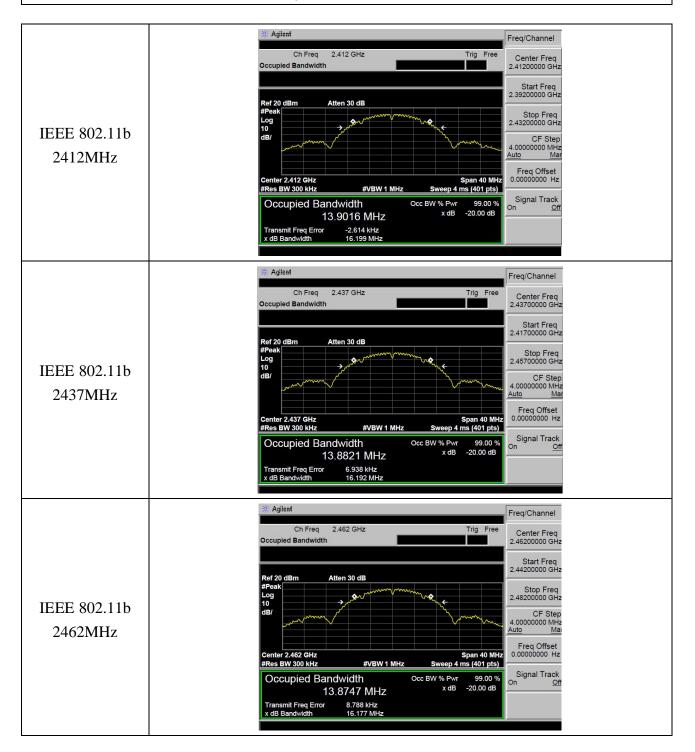
5.3 6dB Occupy Bandwidth

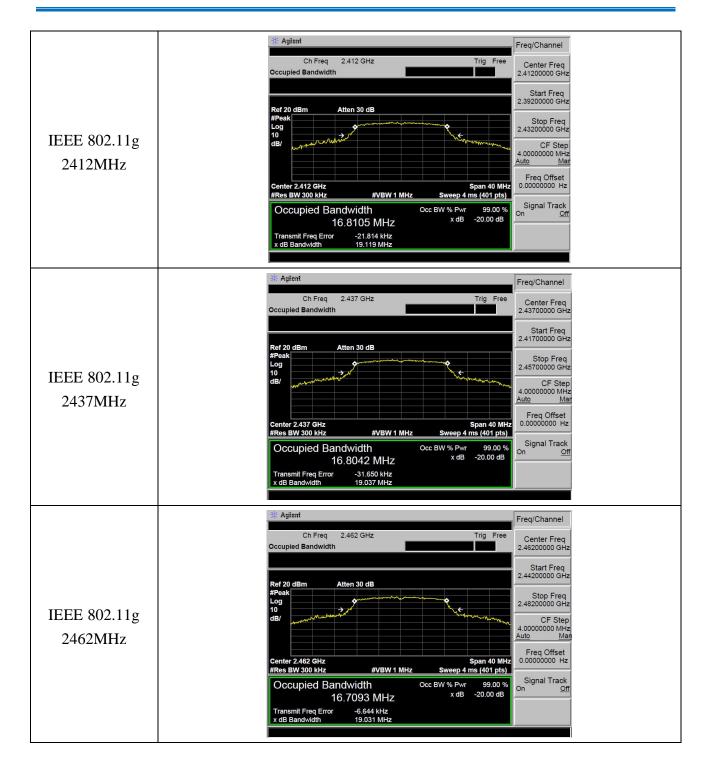

Report No.: CQASZ20190700562E-01

Measurement Data

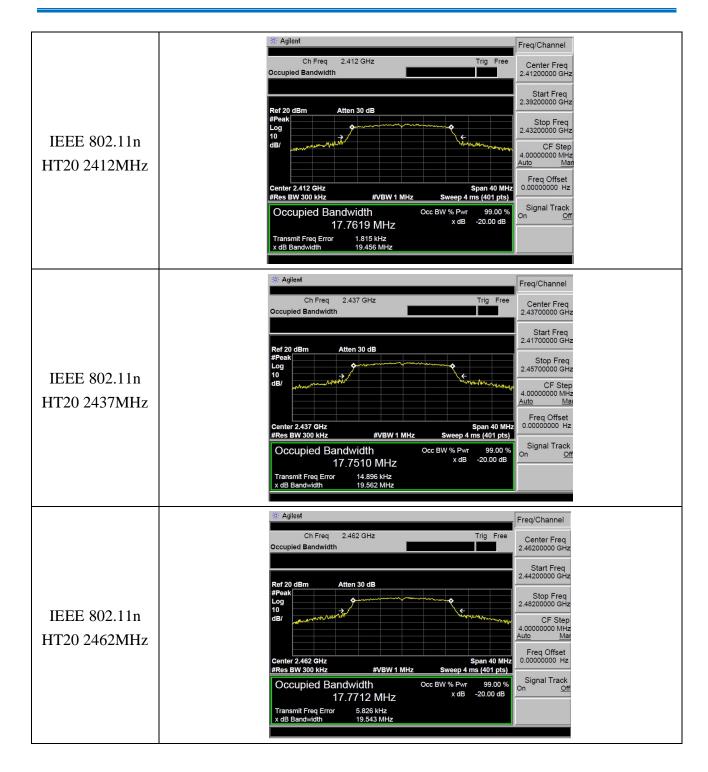

Test Mode	СН	6dB bandwidth (MHz)	20dB bandwidth (MHz)	Limit (KHz)
	CH1	9.103	16.199	>500
IEEE 802.11 b	СН6	9.052	16.192	>500
	CH11	8.563	16.177	>500
	CH1	16.315	19.119	>500
IEEE 802.11 g	CH6	15.803	19.037	>500
	CH11	15.020	19.031	>500
IEEE 002 11	CH1	15.037	19.456	>500
IEEE 802.11 n	CH6	16.083	19.562	>500
HT 20	CH11	15.062	19.543	>500
IEEE 000 11	CH3	35.161	39.988	>500
IEEE 802.11 n HT 40	СН6	35.187	39.936	>500
	СН9	35.176	39.940	>500
Conclusion: PASS				

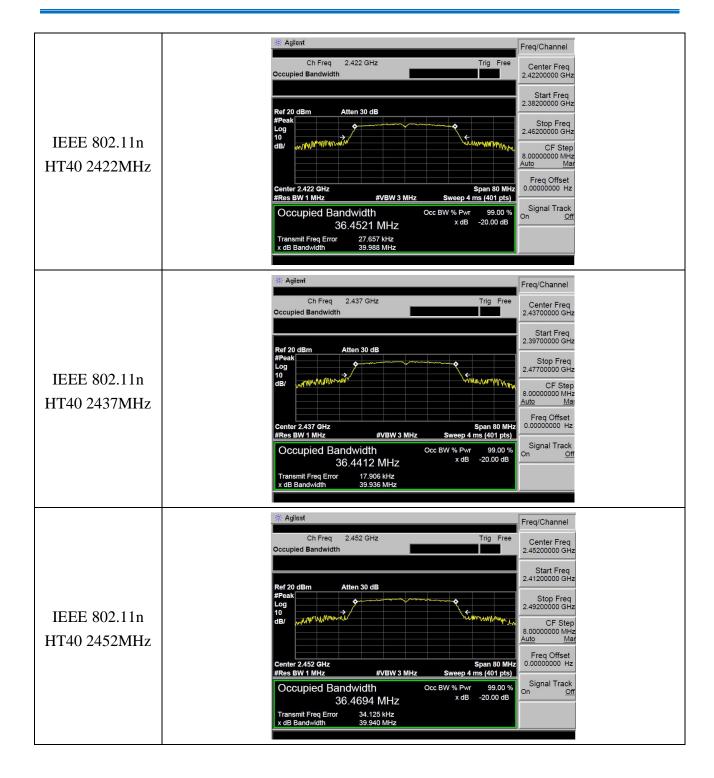

Test plot as follows:





Report No.: CQASZ20190700562E-01

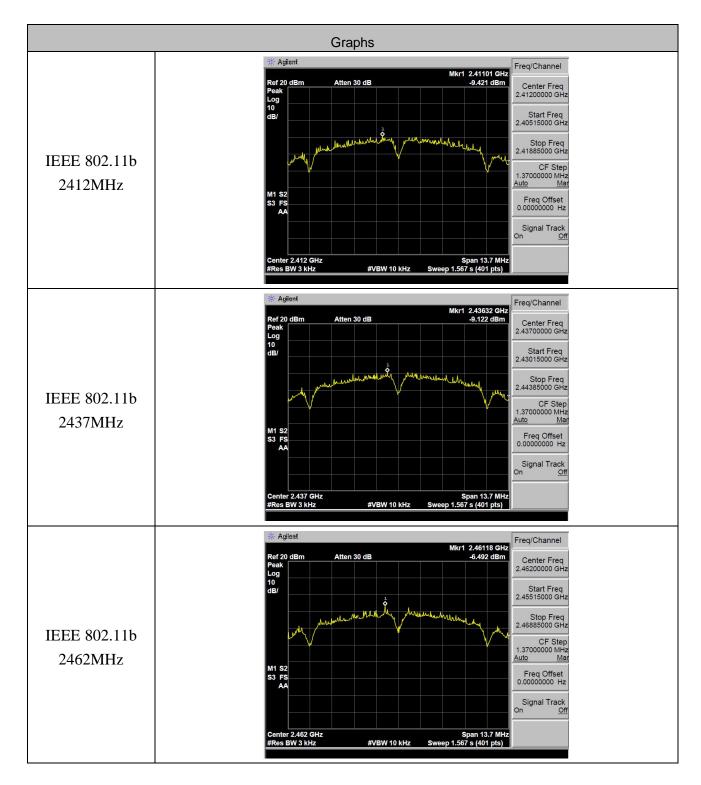

Graphs_20dB Bandwidth



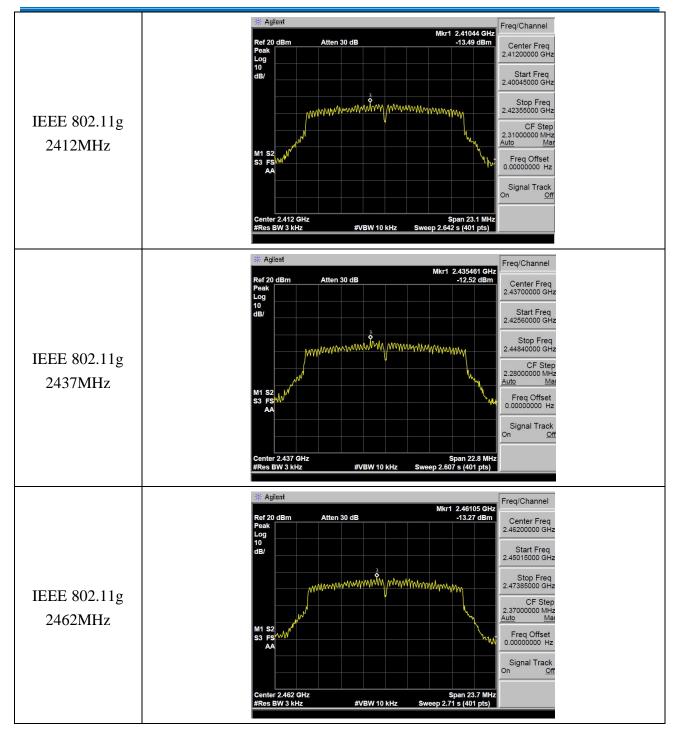
Report No.: CQASZ20190700562E-01

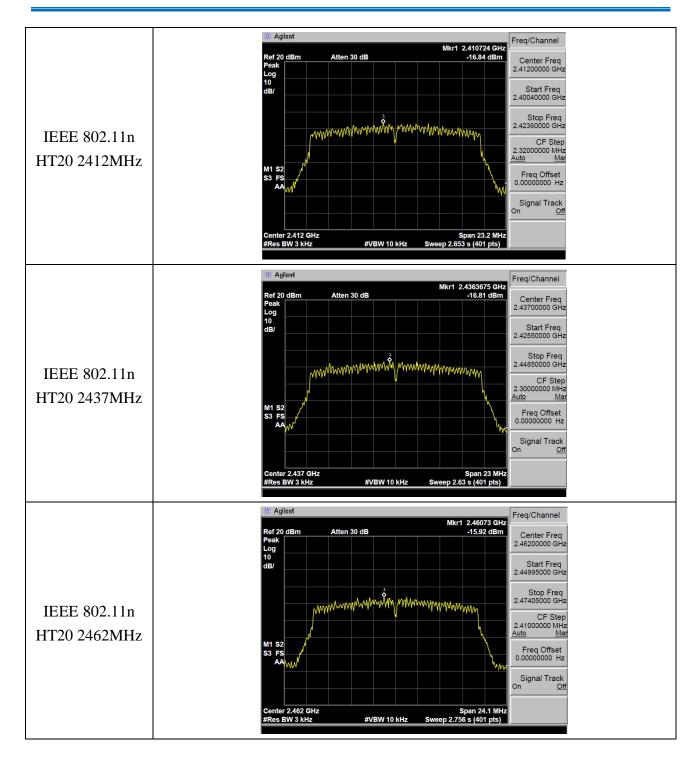
5.4 Power Spectral Density

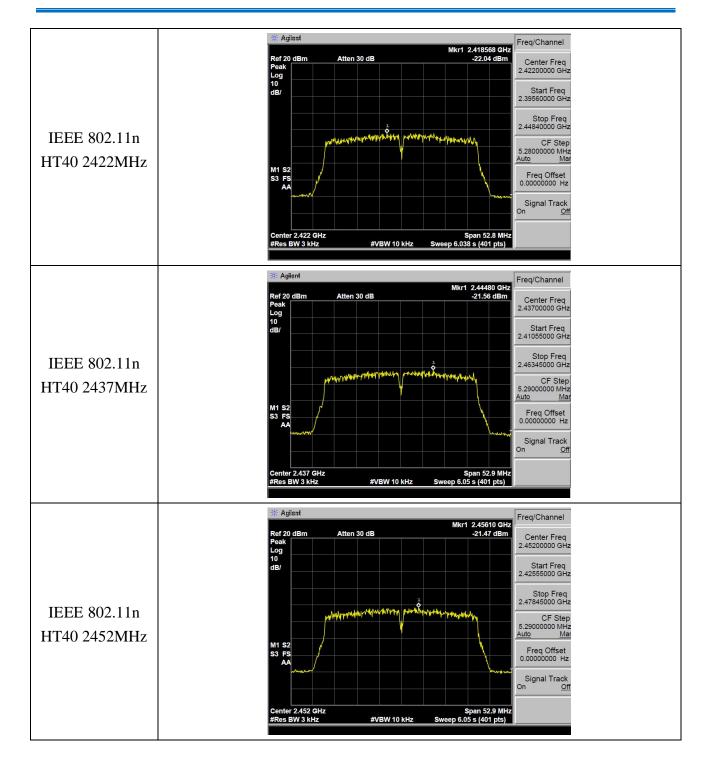
Test Requirement:	47 CFR Part 15C Section 15.247 (e)			
Test Method:	ANSI C63.10: 2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Offset=cable loss+ attenuation factor			
Exploratory Tost Mode:				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;			
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20/HT40); Only the worst case is recorded in the report.			
Limit:	≤8.00dBm/3kHz			
Test Results:	Pass			

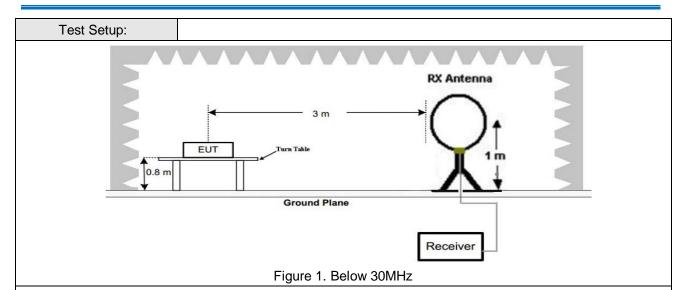

Report No.: CQASZ20190700562E-01

Measurement Data


Test Mode	СН	Power density (dBm/3kHz)	Limit (dBm/3kHz)
	CH1	-9.42	8
IEEE 802.11 b	СН6	-9.12	8
	CH11	-6.49	8
	CH1	-13.49	8
IEEE 802.11 g	СН6	-12.52	8
	CH11	-13.27	8
	CH1	-16.84	8
IEEE 802.11n (HT20)	CH6	-16.81	8
	CH11	-15.92	8
	СН3	-22.04	8
IEEE 802.11n (HT40)	CH6	-21.56	8
	CH9	-21.47	8
Conclusion: PASS			


Test plot as follows:




Report No.: CQASZ20190700562E-01

5.5 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance:	3m (Semi-Anecho	ic Chamber)					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above 10112	Peak	1MHz	10Hz	Average			
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency							
	emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							

Report No.: CQASZ20190700562E-01

Antenna Tower

AE EUT

Ground Reference Plane

Test Receiver

Test Receiver

Test Receiver

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

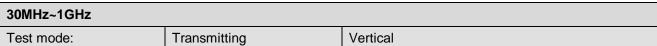
Note: For the radiated emission test above 1GHz:

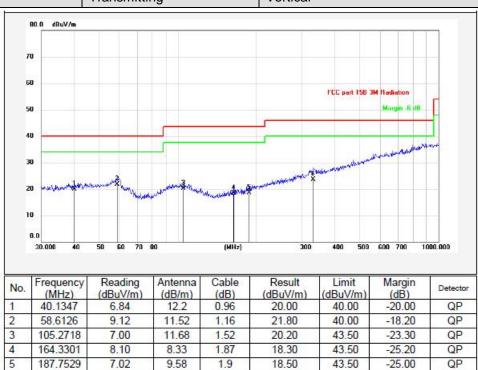
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.				
		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.				
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.				
		g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel				
		h. Repeat above procedures until all frequencies measured was complete.				
	Test	Transmitting with all kind of modulations, data rates.				
Mode:		Transmitting mode.				
Final Test Mode:		Pretest the EUT at Transmitting mode				
		Through Pre-scan, 802.11b,802.11g M,802.11n(HT20,HT40)				
		find the 1Mbps of rate of 802.11b at lowest channel is the worst case.				
		Only the worst case is recorded in the report.				
Test Results:		Pass				

6


331.3546


6.91

Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20190700562E-01

5.5.1 Radiated emission below 1GHz

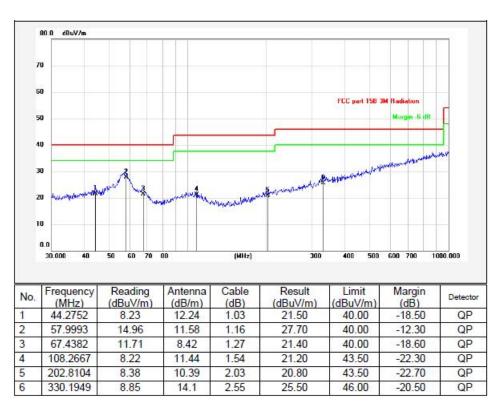
Remarks:1. Result=Reading+Antenna+Cable
2. If Peak Result complies with QP Limit, QP Result is deemed to comply with QP Limit.

14.13

2.56

23.60

46.00


-22.40

QP

Report No.: CQASZ20190700562E-01

Test mode: Transmitting Horizontal

Remarks:1. Result=Reading+Antenna+Cable
2. If Peak Result complies with QP Limit, QP Result is deemed to comply with QP Limit.

Report No.: CQASZ20190700562E-01

5.5.2 Transmitter emission above 1GHz

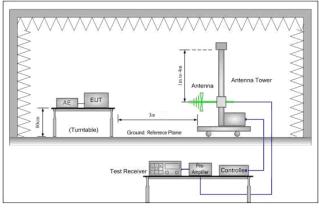
Test mode: 8	02.11b(1Mb	ps)		Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4824.000	60.54	-4.26	56.28	74	-17.72	peak	Н
4824.000	43.55	-4.26	39.29	54	-14.71	AVG	Н
7236.000	51.00	1.18	52.22	74	-21.70	peak	Н
7236.000	37.90	1.18	39.08	54	-14.92	AVG	Н
4824.000	62.79	-4.26	58.53	74	-15.47	peak	V
4824.000	46.80	-4.26	42.54	54	-11.40	AVG	V
7236.000	50.41	1.18	51.59	74	-22.41	peak	V
7236.000	36.80	1.18	37.98	54	-16.02	AVG	V

Test mode: 8	Test mode: 802.11b(1Mbps)				el:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4874.000	59.60	-4.12	55.48	74	-18.48	peak	Н
4874.000	43.36	-4.12	39.14	54	-14.86	AVG	Н
7311.000	49.55	1.46	51.01	74	-22.99	peak	Н
7311.000	35.19	1.46	36.65	54	-17.35	AVG	Н
4874.000	59.41	-4.12	55.29	74	-18.71	peak	V
4874.000	43.11	-4.12	38.99	54	-15.01	AVG	V
7311.000	48.59	1.46	50.05	74	-23.95	peak	V
7311.000	35.99	1.46	37.44	54	-16.56	AVG	V

Report No.: CQASZ20190700562E-01

Test mode: 8	st mode: 802.11b(1Mbps) Test channel:		Highest				
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4924.000	59.55	-4.03	55.52	74	-18.48	peak	Н
4924.000	45.93	-4.03	41.90	54	-12.10	AVG	Н
7386.000	51.66	1.66	53.32	74	-20.68	peak	Н
7386.000	36.97	1.66	38.63	54	-15.37	AVG	Н
4924.000	61.00	-4.03	56.97	74	-17.03	peak	V
4924.000	45.88	-4.03	41.85	54	-12.15	AVG	V
7386.000	49.96	1.66	51.62	74	-22.38	peak	V
7386.000	36.87	1.66	38.53	54	-15.47	AVG	٧

Remark:


- 1) The 1Mbps of rate of 802.11b is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: CQASZ20190700562E-01

5.6 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Limit:	Frequency	Frequency Limit (dBuV/m @3m) Remark						
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 4015 54.0 Averag							
	Above 1GHz 74.0 Peak Value							
Test Setup:								

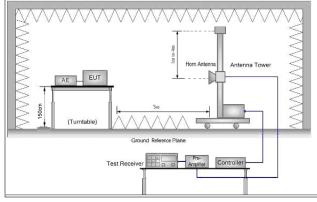


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

	measurement.		
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.		
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.		
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel		
	g. Test the EUT in the lowest channel, the Highest channel		
	h. Repeat above procedures until all frequencies measured was complete.		
Exploratory Tes	Transmitting with all kind of modulations, data rates.		
Mode:	Transmitting mode.		
Final Test Mode:	Pretest the EUT at Transmitting mode		
	Through Pre-scan, 802.11b,802.11g M,802.11n(HT20,HT40)		
	find the 802.11n HT40 is the worst case.		
	Only the worst case is recorded in the report.		
Test Results:	Pass		

Report No.: CQASZ20190700562E-01

Test data:

Test mode: 8	02.11n HT40)		Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2310.000	61.66	-4.26	57.40	74	-16.60	peak	Н
2310.000	44.12	-4.26	39.86	54	-14.14	AVG	Н
2390.000	59.36	1.18	60.54	74	-13.46	peak	Н
2390.000	45.66	1.18	46.84	54	-7.16	AVG	Н
2310.000	63.01	-4.26	58.75	74	-15.25	peak	V
2310.000	49.12	-4.26	44.86	54	-9.14	AVG	V
2390.000	57.88	1.18	59.06	74	-14.94	peak	V
2390.000	45.01	1.18	46.19	54	-7.81	AVG	V

Test mode: 802.11n HT40				Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2483.500	59.89	-4.03	55.86	74	-18.14	peak	Н
2483.500	43.78	-4.03	39.75	54	-14.25	AVG	Н
2500.000	54.01	1.66	55.67	74	-18.33	peak	Н
2500.000	40.11	1.66	41.77	54	-12.23	AVG	Н
2483.500	59.64	-4.03	55.61	74	-18.39	peak	V
2483.500	46.00	-4.03	41.97	54	-12.03	AVG	V
2500.000	55.33	1.66	56.99	74	-17.01	peak	V
2500.000	39.41	1.66	41.07	54	-12.93	AVG	V

Remark:

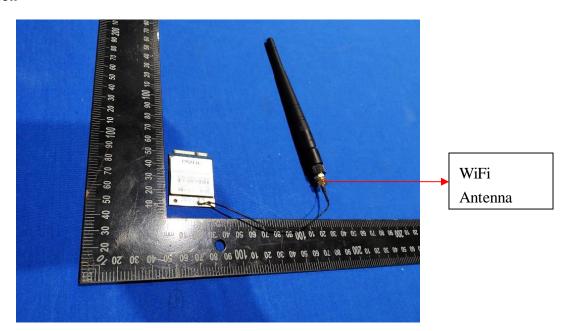
- 1) The 802.11n HT40 is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

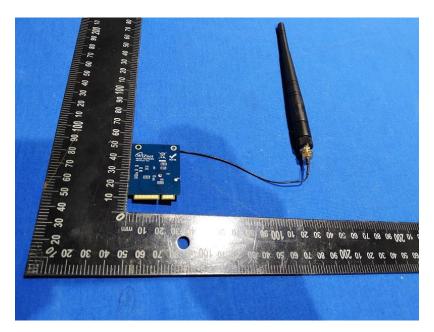
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

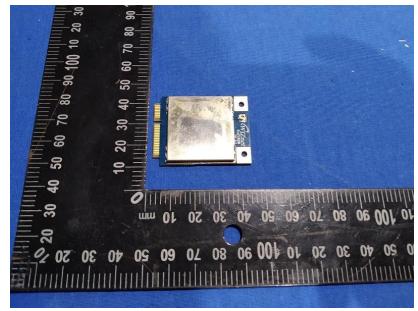
30MHz~1GHz:

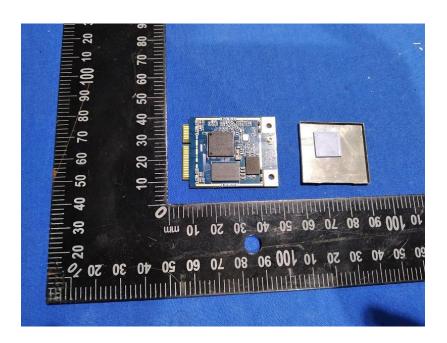

Above 1GHz:

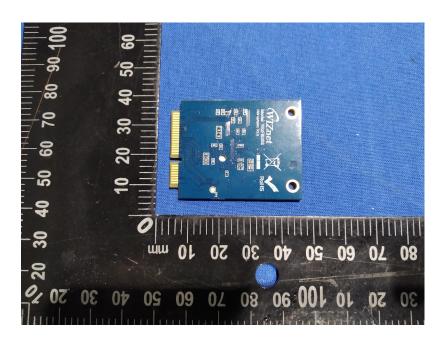


7 Photographs - EUT Constructional Details

Test model No.:







THE END