

RADIO TEST REPORT

Report No:STS2205025W01

Issued for

WIZnet H.K. Limited

Unit 219, Building 1W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong

Product Name:	WiFi Module
Brand Name:	WIZnet
Model Name:	WizFi360
Series Model:	WizFi360-PA,WizFi360-CON
Test Standard:	ETSI EN 300 328 V2.2.2 (2019-07)

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Page 2 of 116

TEST REPORT CERTIFICATION

Applicant's Name:	WIZnet H.K. Limited
Address:	Unit 219, Building 1W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
Manufacturer's Name:	WIZnet Co., Ltd.
Address:	5F Humax Village,216 Hwangsaeul-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13595 Korea
Product Description	
Product Name:	WiFi Module
Brand Name:	WIZnet
Model Name:	WizFi360
Series Model:	WizFi360-PA,WizFi360-CON
Test Standards	ETSI EN 300 328 V2.2.2 (2019-07)
This report shall not be reprodu	ced except in full, without the written approval of STS, this document

This report shall not be reproduced except in full, without the written approval of STS, this document only be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests:	10 June 2019 ~ 02 Aug. 2019 27 Oct. 2020 ~ 30 Oct. 2020
Date of Issue	10 May 2022
Test Result	Pass

Testing Engineer

(Chris Chen)

Technical Manager :

ean She

(Sean she)

Authorized Signatory :

Boney Juny

(Bovey Yang)

Page 3 of 116

Report No.: STS2205025W01

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 ENVIRONMENTAL CONDITIONS FOR TESTING	13
2.3 TEST MODE	13
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	14
2.5 EQUIPMENTS LIST	15
3. EFFECTIVE RADIATED POWER	16
3.1 LIMIT	16
3.2 TEST PROCEDURES	16
3.3 TEST SETUP	16
3.4 TEST RESULTS	17
4. PEAK POWER DENSITY	33
4.1 LIMIT	33
4.2 TEST PROCEDURES	33
4.3 TEST SETUP	34
4.4 TEST RESULTS	34
5. OCCUPIED CHANNEL BANDWIDTH	47
5.1 LIMIT	47
5.2 TEST PROCEDURES	47
5.3 TEST SETUP	47
5.4 TEST RESULTS	48
6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	58
6.1 LIMIT	58
6.2 TEST PROCEDURES	58
6.3 TEST SETUP	58
6.4 TEST RESULTS	59
7. ADAPTIVE (CHANNEL ACCESS MECHANISM)	67
7.1 LIMIT	67
7.2 TEST PROCEDURES	67
7.3 TEST SETUP	68

Page 4 of 116

Report No.: STS2205025W01

Table of Contents

7.4 TEST RESULT	69
8. SPURIOUS EMISSIONS – TRANSMITTER	96
8.1 LIMIT	96
8.2 TEST PROCEDURES	96
8.3 TEST SETUP	97
8.4 EUT OPERATION DURING TEST	98
8.5 TEST RESULTS	99
9. SPURIOUS EMISSIONS – RECEIVER	103
9.1 LIMIT	103
9.2 TEST PROCEDURES	103
9.3 TEST SETUP	104
9.4 EUT OPERATION DURING TEST	104
9.5 TEST RESULTS	105
10. RECEIVER BLOCKING	107
10.1 LIMIT	107
10.2 TEST PROCEDURES	108
10.3 TEST SETUP	109
10.4 TEST RESULTS	110

Page 5 of 116

Report No.: STS2205025W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents					
00	02 Aug. 2019	STS1906023W01	ALL	Initial Issue					
00	25 Feb. 2020	STS2002179W01	ALL	Updated product name, model name and series model name.					
00	30 Oct. 2020	STS2010375W01	ALL	Updated standard version, RSE test data and Blocking test data, Applicant's Name/Address and Manufacturer's Name/Address					
00	10 May 2022	STS2205025W01	ALL	Updated Applicant's Address and Manufacturer's Name/Address.					

Shenzhen STS Test Services Co., Ltd.

Ш

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

ETSI EN 300 328 V2.2.2							
Test Item	Limit	Frequency Range (MHz)	Applicable (Yes/No)				
TRANS	MITTER PARAMETERS	((100,110)				
RF output power	Clause 4.3.2.2.3		Y				
Power Spectral Density	Clause 4.3.2.3.3		Y				
Duty Cycle, Tx-sequence, Tx-gap	Clause 4.3.2.4.3		Ν				
Medium Utilization	Clause 4.3.2.5.3	2400-2483.5	Ν				
Adaptivity(adaptive equipment using modulations other than FHSS)	Clause 4.3.2.6		Y				
Occupied Channel Bandwidth	Clause 4.3.2.7.3		Y				
Transmitter unwanted emissions in the OOB domain	Clause 4.3.2.8.3	FL=2400-2BW FH=2483.5+2BW	Y				
Transmitter unwanted emissions in the spurious domain(Conducted)		00.40750	Ν				
Transmitter unwanted emissions in the spurious domain(Radiated)	Clause 4.3.2.9.3	30-12750	Y				
RECE	IVER PARAMETERS	•					
Spurious emissions (conducted)			Ν				
Spurious emissions (radiated)	Clause 4.3.2.10.3	30-12750	Y				
Receiver Blocking	Clause 4.3.2.11.3	2400-2483.5	Y				
Geo-location capability	Clause 4.3.2.12.3		Ν				

Ш

Page 7 of 116

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated below 1GHz	±2.26dB
4	All emissions, radiated 1GHz-18GHz	±2dB
5	All emissions, radiated>18G	±2.88dB

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	WiFi Module			
Brand Name	WIZnet			
Model Name.	WizFi360			
Series Model	WizFi360-PA,WizFi36	0-CON		
Model Difference	 1.WizFi360-PA has a PCB antenna onboard, WizFi360-CON doesn't have; 2.WizFi360-CON has an IPEX antenna connector onboard, WizFi360-PA doesn't have; 3.WizFi360-PA has a LED light onboard, WizFi360-CON doesn't have 4.WizFi360 is the same as wizfi360-PA 			
Product Description	Antenna Gain(Peak): Based on the applica Manual, the EUT is	802.11b/g/n(20MHz): 2412~2472MHz 802.11n(40MHz):2422~2462MHz 802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 13CH/9CH .Please see Note 2.		
Channel List	Refer to below			
Power Rating	DC 3.3V			
Hardware version number	Rev 1.2			
Software version number	V1.0.1.2			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 9 of 116

Report No.: STS2205025W01

2	
2	

Channel List for 802.11b/g/n(20MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452	13	2472
02	2417	06	2437	10	2457		
03	2422	07	2442	11	2462		
04	2427	08	2447	12	2467		

Channel List for 802.11n(40MHz)

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
03	2422	06	2437	09	2452		
04	2427	07	2442	10	2457		
05	2432	08	2447	11	2462		

a) The type of modulation used by the equipment:

□FHSS

■other forms of modulation

b) In case of FHSS modulation:

•In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:

•In case of Adaptive Frequency Hopping Equipment:

The maximum number of Frequencies: 13

The minimum number of Frequencies: 09 The (average) Dwell Time:

- c) Adaptive / non-adaptive equipment:

□non-adaptive Equipment

■adaptive Equipment without the possibility to switch to a non-adaptive mode □adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The Channel Occupancy Time implemented by the equipment:

The equipment has implemented an LBT based DAA mechanism

- In case of equipment using modulation different from FHSS:
- The equipment is Frame Based equipment
- The equipment is Load Based equipment

□The equipment can switch dynamically between Frame Based and Load Based equipment The CCA time implemented by the equipment: µs

The value g as referred to in clause 4.3.2.5.2.2.2

The equipment has implemented an non-LBT based DAA mechanism

The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.): dBm

The maximum (corresponding) Duty Cycle:%

Equipment with dynamic behavior, that behavior is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power 802.11b
- Power Spectral Density 802.11b
- Occupied Channel Bandwidth
 802.11b
- Transmitter unwanted emissions in the OOB domain 802.11b
- Adaptivity (adaptive equipment using modulations other than FHSS) 802.11b
- Transmitter unwanted emissions in the spurious domain 802.11b
- Receiver spurious emissions
 802.11b
- Receiver Blocking 802.11b
- g) The different transmit operating modes (tick all that apply):
 - Operating mode 1: Single Antenna Equipment
 - Equipment with only 1 antenna

Equipment with 2 diversity antennas but only 1 antenna active at any moment in time
Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode where only 1 antenna is used. (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
Single spatial stream / Standard throughput / (e.g. IEEE 802.11[™] [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
NOTE: Add more lines if more channel bandwidths are supported.
Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
Single spatial stream / Standard throughput (e.g. IEEE 802.11[™] [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
NOTE: Add more lines if more channel bandwidths are supported.
Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
Single spatial stream / Standard throughput (e.g. IEEE 802.11[™] [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
NOTE: Add more lines if more channel bandwidths are supported.

h) In case of Smart Antenna Systems:

The number of Receive chains:
 The number of Transmit chains:
 symmetrical power distribution
 asymmetrical power distribution
 In case of beam forming, the maximum beam forming gain:
 NOTE: Beam forming gain does not include the basic gain of a single antenna.

i) Operating Frequency Range(s) of the equipment:

- Operating Frequency Range 1: 2412 MHz to 2472 MHz
- Operating Frequency Range 2: 2422 MHz to 2462 MHz NOTE: Add more lines if more Frequency Ranges are supported.

j) Occupied Channel Bandwidth(s):

- Occupied Channel Bandwidth : 14.701MHz
- Occupied Channel Bandwidth : 36.321MHz

NOTE: Add more lines if more channel bandwidths are supported.

k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.): Stand-alone

Shenzhen STS Test Services Co., Ltd.

Report No.: STS2205025W01

Page 11 of 116 Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment) □Plug-in radio device (Equipment intended for a variety of host systems) Other I) The extreme operating conditions that apply to the equipment: Operating temperature range: -40° C to 85° C Operating voltage range: DC 3.0V~ DC 3.6V(Normal: DC 3.3V) Details provided are for the: ■stand-alone equipment □combined (or host) equipment □test jig m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels: Antenna Type PCB Antenna External Antenna Antenna Gain: PCB Antenna: 2 dBi External Antenna: 3.5 dBi If applicable, additional beamforming gain (excluding basic antenna gain): dB Temporary RF connector provided □No temporary RF connector provided Dedicated Antennas (equipment with antenna connector) □Single power level with corresponding antenna(s) □Multiple power settings and corresponding antenna(s) Number of different Power Levels: Power Level 1: dBm Power Level 2: dBm Power Level 3: dBm NOTE 1: Add more lines in case the equipment has more power levels. NOTE 2: These power levels are conducted power levels (at antenna connector). For each of the Power Levels, provide the intended antenna assemblies,

their, corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1	PCB Antenna: 2 dBi External Antenna: 3.5 dBi	15.81	WizFi360
2			
3			
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1			
2			
3			
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level. **Power Level 3:** dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1			
2			
3			
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices:

Details provided are for the: stand-alone equipment

combined (or host) equipment

□test jig Supply Voltage

□AC mains State AC voltage:

■ DC State DC voltage : 3.3V

In case of DC, indicate the type of power source

□Internal Power Supply

External Power Supply or AC/DC adapter

■Battery: 3.3V

□Other:

- o) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.): WLAN
- p) If applicable, the statistical analysis referred to in clause 5.4.1 q)

(to be provided as separate attachment)

q) If applicable, the statistical analysis referred to in clause 5.4.1 r)

- (to be provided as separate attachment)
- r) Geo-location capability supported by the equipment:

□ Yes

 $\hfill\square$ The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user

No

s) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3):

Page 13 of 116

2.2 ENVIRONMENTAL CONDITIONS FOR TESTING

Test Condition	Temperature(℃)	Voltage(V)	Relative Humidity(%)
NT/NV	23	3.3V	51
LT/NV	-40	3.3V	/
HT/NV	85	3.3V	/

Note:

(1) The HT 85°C and LT -40°C was declared by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) NV: Normal Voltage; NT: Normal Temperature.

(3) LT: Low Extreme Test Temperature; HT: High Extreme Test Temperature.

(4) The measurements are performed at the highest, middle, lowest available channels.

2.3 TEST MODE

E-2	E-1
Notebook	EUT

The EUT was programmed to be in continuously transmitting mode.

Channel List for b/g/n(20MHz)					
Test Channel	EUT Channel	Test Frequency (MHz)			
lowest	CH01	2412			
middle	CH07	2442			
highest	CH13	2472			

Channel List for 802.11 n(40MHz)				
Test Channel	EUT Channel	Test Frequency (MHz)		
lowest	CH03	2422		
middle	CH07	2442		
highest	CH11	2462		

Shenzhen STS Test Services Co., Ltd.

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

Necessary accessories

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-2	Notebook	HP	500-320cx	N/A	N/A
C-1	USB Cable	N/A	N/A	100cm	N/A
				/	

Note:

(1) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.

Report No.: STS2205025W01

2.5 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.01
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2019.10.15	2022.10.14
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2020.09.30	2021.09.29
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2020.09.30	2021.09.29
Wireless Communications Test Set	R&S	CMW 500	131428	2020.03.05	2021.03.04
Signal Analyzer	R&S	FSV 40-N	101823	2020.09.30	2021.09.29
Temperature & Humidity	HH660	Mieo	N/A	2020.09.30	2021.09.29
Turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N.C.R	N.C.R
Test SW	BALUN		BL410-E/15.2.0.	.399	I
RF Connected Test equipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
			MY55520005	2020.09.30	2021.09.29
MIMO Power measurement	Keysight	U2021XA	MY55520006	2020.09.30	2021.09.29
test Set			MY56120038	2020.09.30	2021.09.29
			MY56280002	2020.09.30	2021.09.29
Signal Generator	Agilent	N5182A	MY46240556	2020.09.30	2021.09.29
Signal Analyzer	Agilent	N9020A	MY49100060	2020.09.30	2021.09.29
Universal Radio communication tester	R&S	CMU200	111058	2020.09.30	2021.09.29
Wireless Communications Test Set	R&S	CMW 500	131428	2020.03.05	2021.03.04
Temperature & Humidity	HH660	Mieo	N/A	2020.09.30	2021.09.29
Temperature& Humidity test chamber	Safety test	AG80L	171200018	2020.03.05	2021.03.04
Programmable power supply	Agilent	E3642A	MY40002025	2020.09.30	2021.09.29
Attenuator	HP	8494B	DC-18G	2020.04.30	2021.04.29
AC Power Source	APC	KDF-11010G	F214050035	N.C.R	N.C.R
Router	WAVLINK	WL-WN575A2	WL1512260336	N.C.R	N.C.R

Test SW

MWRF-TEST

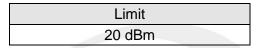
A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

MTS 8310/2.0.0.0

Page 16 of 116

3. EFFECTIVE RADIATED POWER

3.1 LIMIT


FHSS:

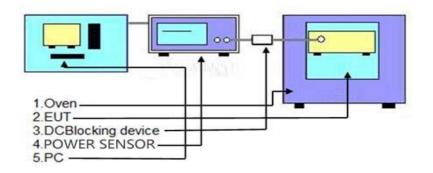
The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm. The maximum RF output power for non-adaptive Frequency Hopping equipment shall be declared by the manufacturer. See clause 5.4.1 m). The maximum RF output power for this equipment shall be equal to or less than the value declared by the manufacturer. This declared value shall be equal to or less than 20 dBm.

Other than FHSS:

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm. The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.4.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.

Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. Save these P_{burst} values, as well as the start and stop times for each burst.


$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

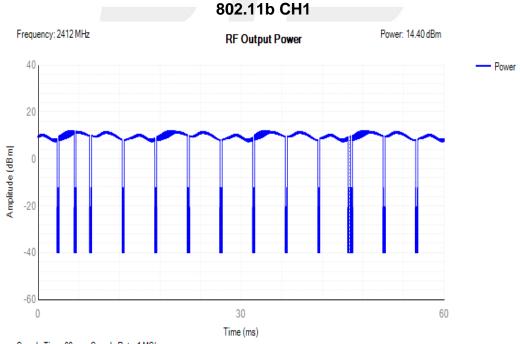
with 'k' being the total number of samples and 'n' the actual sample number

3.2 TEST PROCEDURES

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.2.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.2.2 for the measurement method.
 - a) Use a fast power sensor suitable for 2.4 GHz and capable of 1 MS/s.
 - Use the following settings:
 - Sample speed 1 MS/s or faster.
 - The samples must represent the power of the signal.
 - Measurement duration: For non-adaptive equipment: equal to the observation period defined in b)
 - b) Clause 4.3.1.3.2 or clause 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) is captured
 - c) Print the plots from power sensor by used power sensor on PC, select the max result and record it.

3.3 TEST SETUP

Shenzhen STS Test Services Co., Ltd.

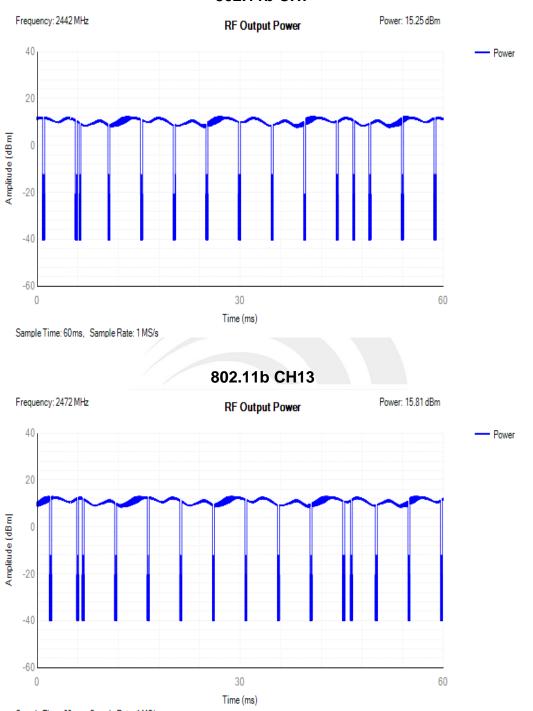

3.4 TEST RESULTS

External Antenna

	on Test conditions		Averag	e EIRP Power (dBm)
Modulation			Low Channel	Middle Channel	High Channel
	Normal		14.40	15.25	15.81
	Extreme	LTNV	14.39	15.25	15.80
		HTNV	14.40	15.25	15.80
802.11b	Max. E.I.R.P			15.81	
	Limits		20dBm (-10dBW)		
	Burst plot		> 10		
	Result			Complies	

Note: Average EIRP Power = Burst power + the antenna gain value

Test Plot

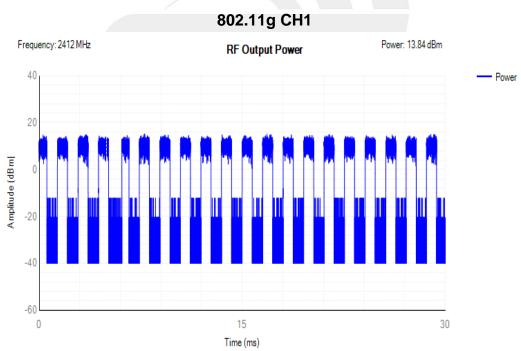


Sample Time: 60ms, Sample Rate: 1 MS/s

Report No.: STS2205025W01

802.11b CH7

Sample Time: 60ms, Sample Rate: 1 MS/s

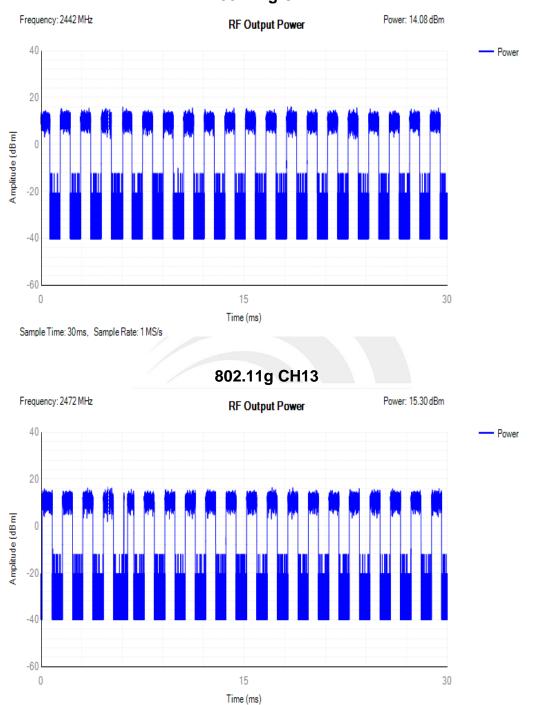

Shenzhen STS Test Services Co., Ltd.

	Test conditions		Average EIRP Powe		
			Low Channel	Middle Channel	High Channel
	Normal		13.84	14.08	15.30
	Extreme -	LTNV	13.84	14.07	15.30
802.11g		HTNV	13.84	14.08	15.29
	Max. E.			15.30	
	Lin	Limits		20dBm (-10dBW)	
	Burs	Burst plot		> 10	
	Res	sult	Complies		

Note: Average EIRP Power = Burst power + the antenna gain value

Test Plot

Sample Time: 30ms, Sample Rate: 1 MS/s

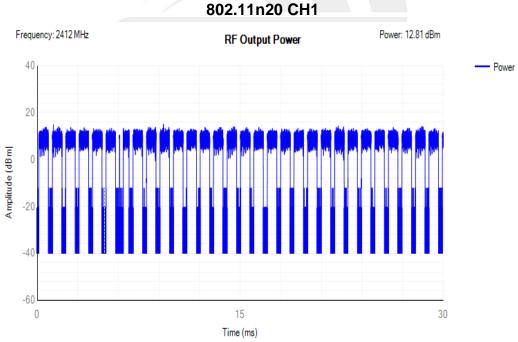

Shenzhen STS Test Services Co., Ltd.

Page 20 of 116

Report No.: STS2205025W01

802.11g CH7

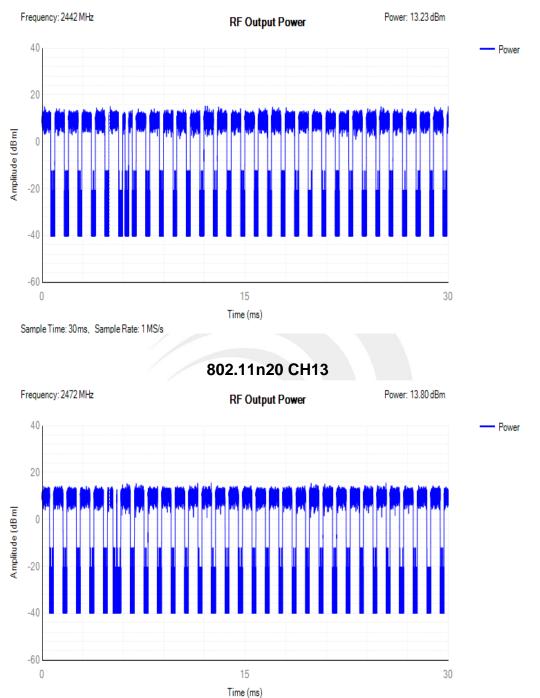
Sample Time: 30ms, Sample Rate: 1 MS/s


Shenzhen STS Test Services Co., Ltd.

	Test conditions		Average EIRP Power (dBm)			
			Low Channel	Middle Channel	High Channel	
	Normal		12.81	13.23	13.80	
802.11n(HT20)	Extreme	LTNV	12.81	13.23	13.80	
		HTNV	12.81	13.23	13.79	
	Max. E.I.R.P		13.80			
	Limits		20dBm (-10dBW)			
	Burst plot		> 10			
	Result		Complies			

Note: Average EIRP Power = Burst power + the antenna gain value

Test Plots



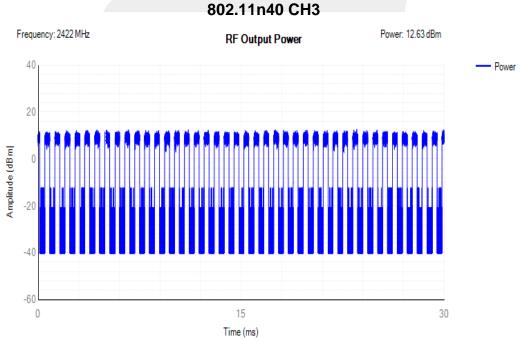
Sample Time: 30ms, Sample Rate: 1 MS/s

Report No.: STS2205025W01

802.11n20 CH7

Sample Time: 30ms, Sample Rate: 1 MS/s

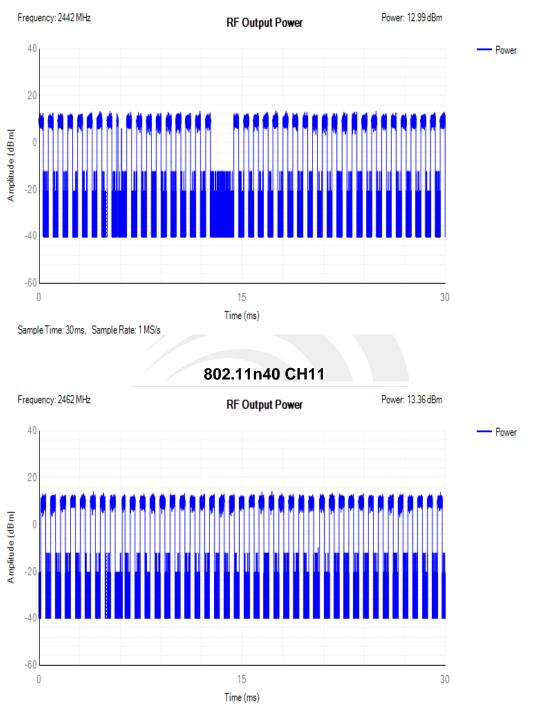
Shenzhen STS Test Services Co., Ltd.



Test Plot

	Test conditions		Average EIRP Power (dBm)			
			Low Channel	Middle Channel	High Channel	
	Normal		12.63	12.99	13.36	
802.11n(HT40)	Extreme	LTNV	12.62	12.98	13.36	
		HTNV	12.63	12.99	13.36	
	Max. E.I.R.P		13.36			
	Limits		20dBm (-10dBW)			
	Burst plot		> 10			
	Result		Complies			

Note: Average EIRP Power = Burst power + the antenna gain value


Sample Time: 30ms, Sample Rate: 1 MS/s

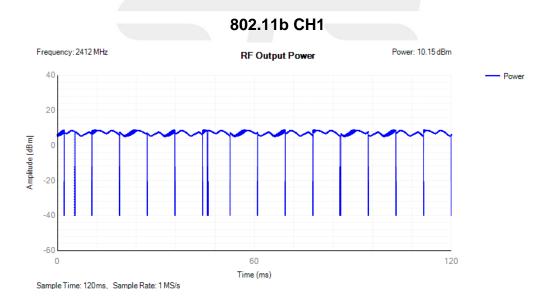
Page 24 of 116

Report No.: STS2205025W01

802.11n40 CH7

Sample Time: 30ms, Sample Rate: 1 MS/s

Shenzhen STS Test Services Co., Ltd.

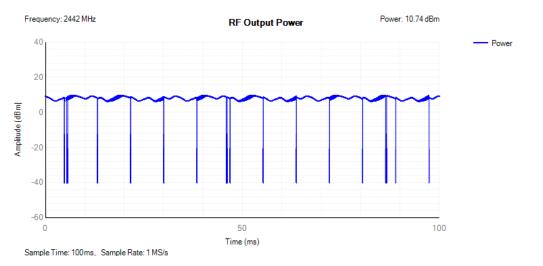

Page 25 of 116

Report No.: STS2205025W01

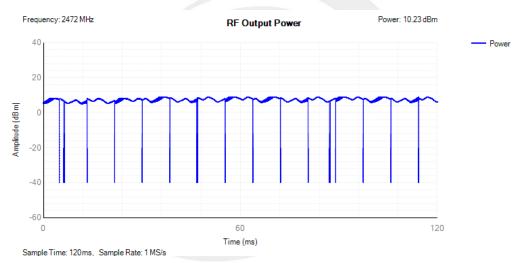
PCB Antenna

Modulation	Test conditions		Average EIRP Power (dBm)			
			Low Channel	Middle Channel	High Channel	
	Nor		10.15	10.74	10.23	
	Extreme	LTNV	9.80	10.65	10.15	
802.11b		HTNV	9.48	10.40	9.98	
	Max. E.I.R.P		10.74			
	Limits		20dBm (-10dBW)			
	Burst plot		> 10			
	Result		Complies			

Note: Average EIRP Power = Burst power + the antenna gain value


Test Plot

Shenzhen STS Test Services Co., Ltd.



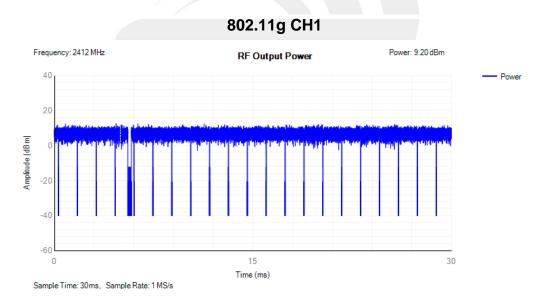
Report No.: STS2205025W01

802.11b CH7

802.11b CH13

Shenzhen STS Test Services Co., Ltd.

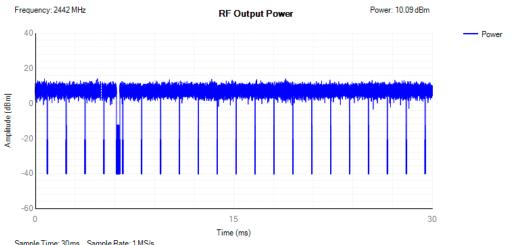
Ш



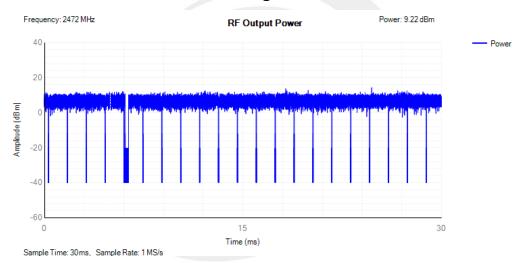
	Test conditions		Average EIRP Power (dBm)			
			Low Channel	Middle Channel	High Channel	
	Normal		9.20	10.09	9.22	
	Extreme	LTNV	8.77	9.62	8.81	
802.11g		HTNV	8.52	9.51	8.56	
	Max. E.I.R.P		10.09			
	Limits		20dBm (-10dBW)			
	Burst plot		> 10			
	Result		Complies			

Note: Average EIRP Power = Burst power + the antenna gain value

Test Plot


Shenzhen STS Test Services Co., Ltd.

Page 28 of 116

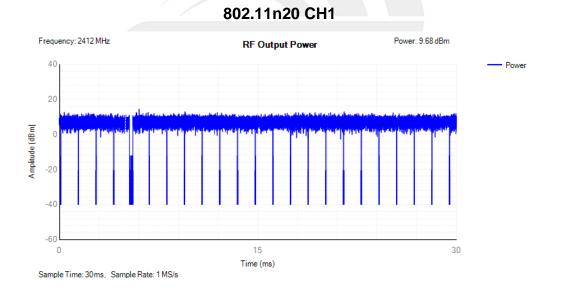

Report No.: STS2205025W01

802.11g CH7

Sample Time: 30 ms, Sample Rate: 1 MS/s

802.11g CH13

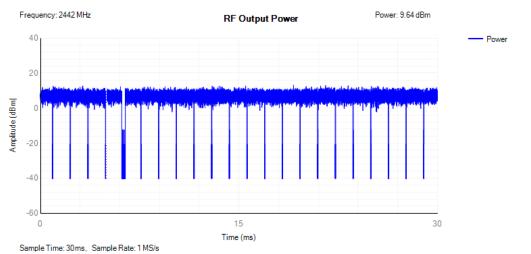
Shenzhen STS Test Services Co., Ltd.

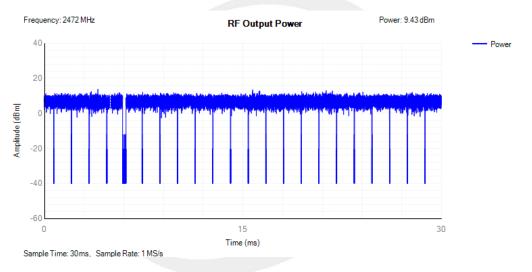

Ш

	Test conditions		Average EIRP Power(dBm)			
			Low Channel	Middle Channel	High Channel	
	Normal		9.68	9.64	9.43	
	Extreme	LTNV	9.31	9.59	9.08	
802.11n(HT20)		HTNV	8.88	9.34	8.73	
	Max. E.I.R.P		9.68			
	Limits		20dBm (-10dBW)			
	Burst plot		> 10			
Result		esult	Complies			

Note: Average EIRP Power = Burst power + the antenna gain value

Test Plots


Shenzhen STS Test Services Co., Ltd.

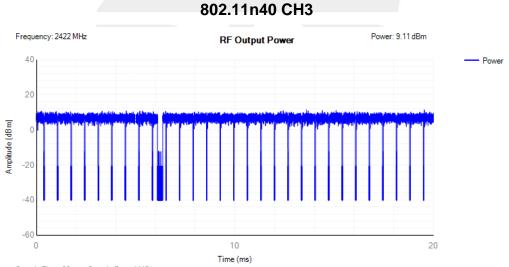

Page 30 of 116

Report No.: STS2205025W01

802.11n20 CH7

802.11n20 CH13

Shenzhen STS Test Services Co., Ltd.


Ш

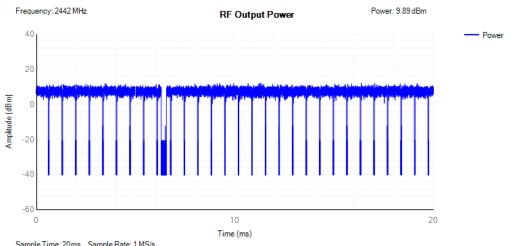
	Test conditions		Average EIRP Power(dBm)			
			Low Channel	Middle Channel	High Channel	
	Normal		9.11	9.89	9.55	
802.11n(HT40)	Extreme	LTNV	8.88	9.82	9.11	
		HTNV	8.57	9.40	8.68	
	Max. E.I.R.P		9.89			
	Limits		20dBm (-10dBW)			
	Burst plot		> 10			
	Result		Complies			

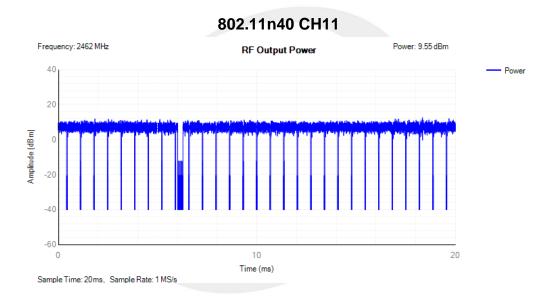
Note: Average EIRP Power = Burst power + the antenna gain value

Test Plot

Sample Time: 20ms, Sample Rate: 1 MS/s

П


Shenzhen STS Test Services Co., Ltd.


Page 32 of 116

Report No.: STS2205025W01

802.11n40 CH7

Sample Time: 20 ms, Sample Rate: 1 MS/s

Shenzhen STS Test Services Co., Ltd.

Ш

Page 33 of 116

4. PEAK POWER DENSITY

4.1 LIMIT

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz

4.2 TEST PROCEDURES

The measurement shall be repeated for the equipment being configured to operate at

- the lowest, the middle, and the highest frequency of the stated frequency range.
- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.3.1 for the test conditions.

2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.3.2 for the measurement method.

a). the equipment setup.

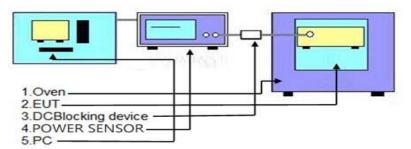
Frequency range	2400MHz-2483.5MHz
RBW/VBW	10KHz/30KHz
Sweep points	>8350 (Set as 10000)
	For non-continuous transmissions: 2 × Channel Occupancy Time × number of sweep points
Sweep time	For continuous transmissions: 10 s; the sweep time may be increased further until a value where the sweep time has no further impact anymore on the RMS value of the signal.
Detector	RMS
Trace	Max hold

b). For conducted measurements on smart antenna systems using either operating mode 2 or 3 (see clause 5.3.2.2), repeat the measurement for each of the transmit ports. For each frequency point, add up the amplitude (power) values for the different transmit chains and use this as the new data set.

c). Add up the values for amplitude (power) for all the samples in the file.

d).Normalize the individual values for amplitude so that the sum is equal to the RF Output Power (e.i.r.p.)

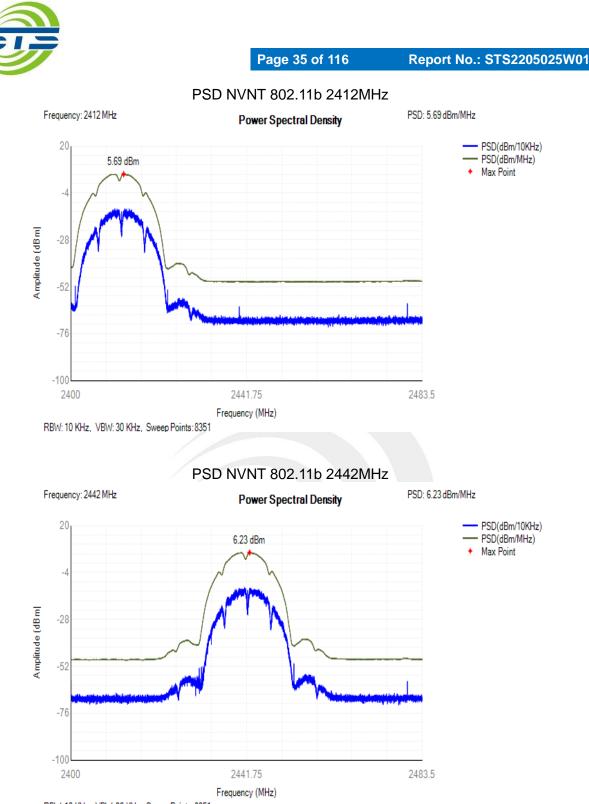
e). Starting from the first sample in the file (lowest frequency), add up the power of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.


f). Shift the start point of the samples added up in step 5 by 1 sample and repeat the procedure in step e (i.e. sample #2 to #101).

g). Repeat step 6 until the end of the data set and record the radiated Power Spectral Density values for each of the 1 MHz segments.

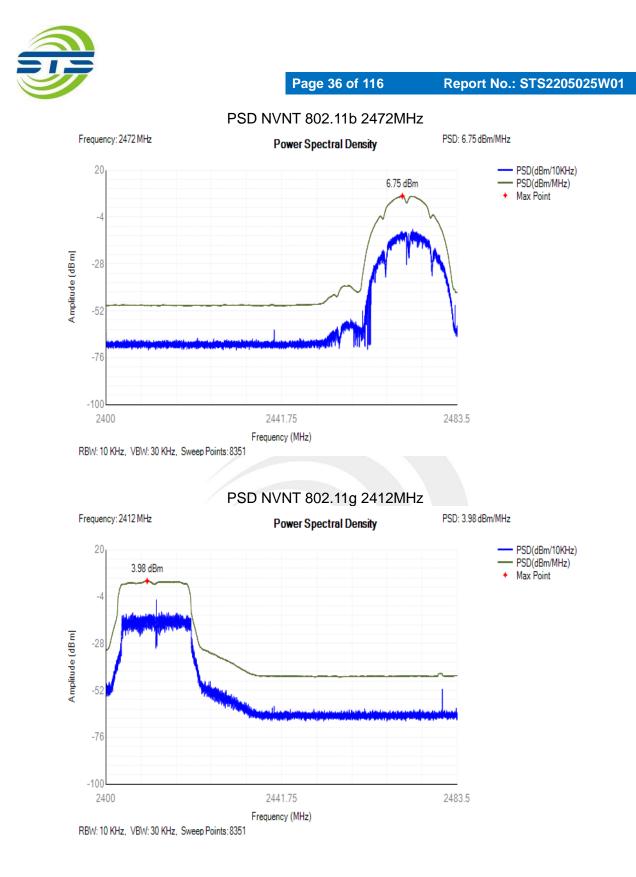
h). From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT.

4.3 TEST SETUP



4.4 TEST RESULTS

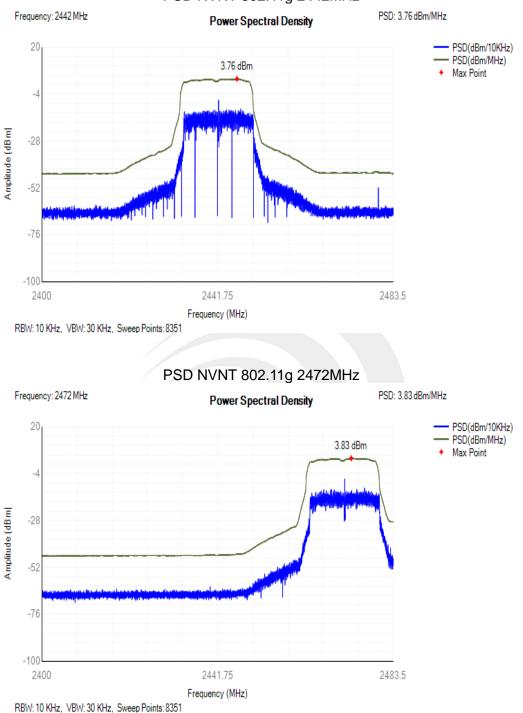
External Antenna							
Condition	Mode	Frequency (MHz)	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict		
NVNT	802.11b	2412	5.69	10	Pass		
NVNT	802.11b	2442	6.23	10	Pass		
NVNT	802.11b	2472	6.75	10	Pass		
NVNT	802.11g	2412	3.98	10	Pass		
NVNT	802.11g	2442	3.76	10	Pass		
NVNT	802.11g	2472	3.83	10	Pass		
NVNT	802.11n(HT20)	2412	1.15	10	Pass		
NVNT	802.11n(HT20)	2442	1.42	10	Pass		
NVNT	802.11n(HT20)	2472	2.09	10	Pass		
NVNT	802.11n(HT40)	2422	-2.06	10	Pass		
NVNT	802.11n(HT40)	2442	-1.55	10	Pass		
NVNT	802.11n(HT40)	2462	-1.06	10	Pass		

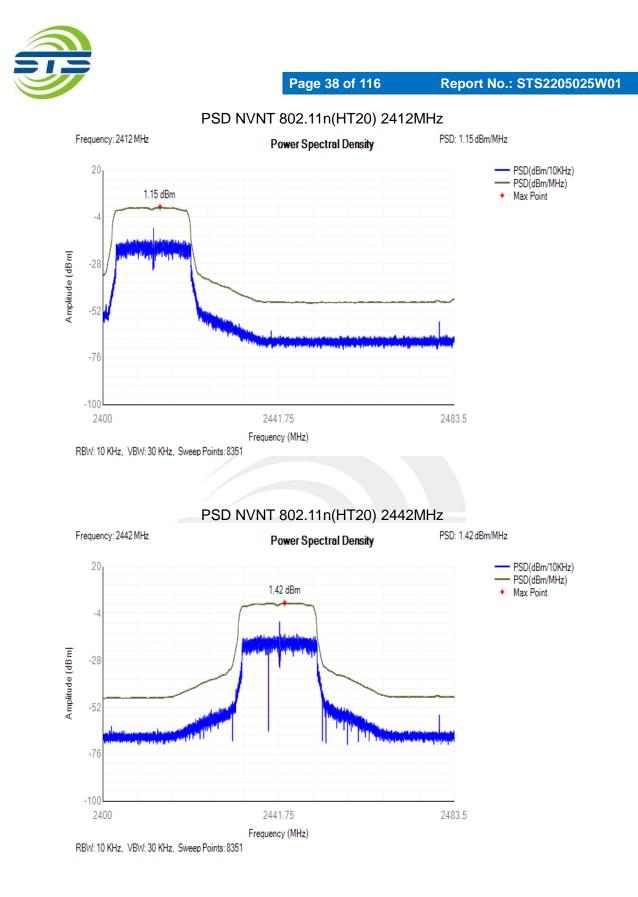

Shenzhen STS Test Services Co., Ltd.

Ш

RBW: 10 KHz, VBW: 30 KHz, Sweep Points: 8351

Shenzhen STS Test Services Co., Ltd.

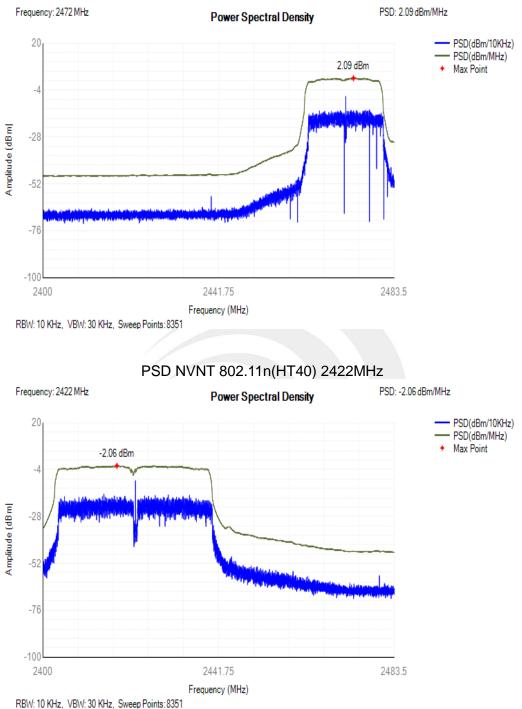



Page 37 of 116

Report No.: STS2205025W01

PSD NVNT 802.11g 2442MHz

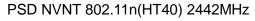
Shenzhen STS Test Services Co., Ltd.

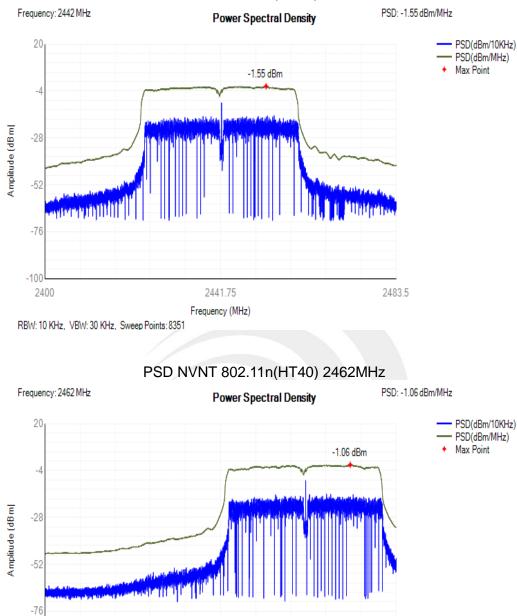


Page 39 of 116

Report No.: STS2205025W01

PSD NVNT 802.11n(HT20) 2472MHz




Shenzhen STS Test Services Co., Ltd.

Page 40 of 116

Report No.: STS2205025W01

2441.75

Frequency (MHz)

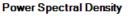
-100

RBW: 10 KHz, VBW: 30 KHz, Sweep Points: 8351

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

2483.5

Page 41 of 116

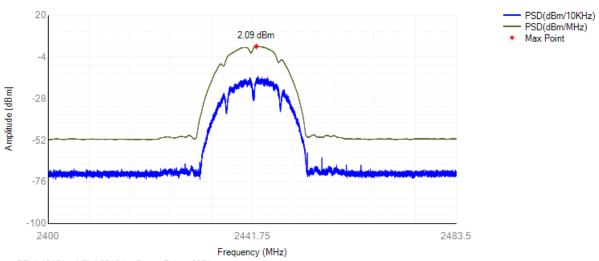

Report No.: STS2205025W01

PCB Antenna

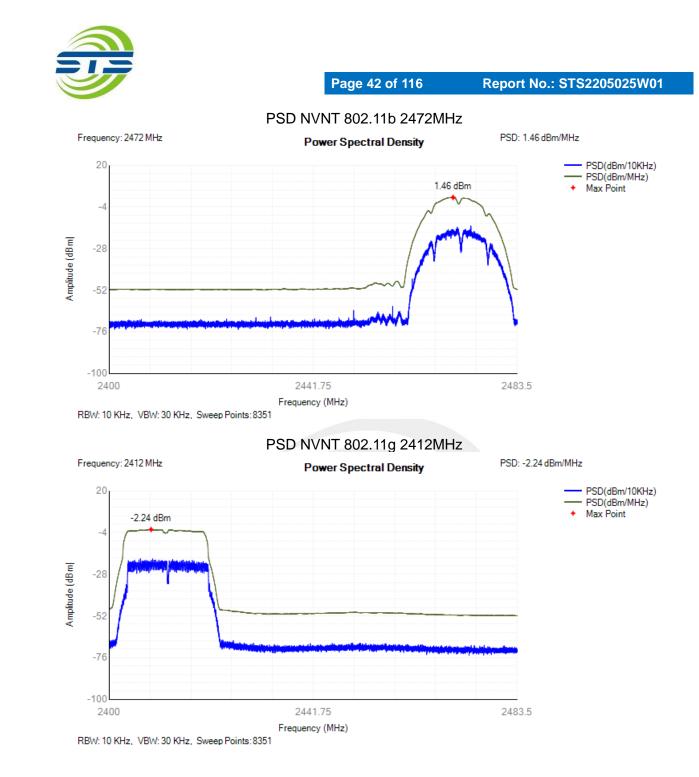
Condition	Mode	Frequency (MHz)	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	802.11b	2412	1.88	10	Pass
NVNT	802.11b	2442	2.09	10	Pass
NVNT	802.11b	2472	1.46	10	Pass
NVNT	802.11g	2412	-2.24	10	Pass
NVNT	802.11g	2442	-0.76	10	Pass
NVNT	802.11g	2472	-1.68	10	Pass
NVNT	802.11n(HT20)	2412	-1.97	10	Pass
NVNT	802.11n(HT20)	2442	-1.29	10	Pass
NVNT	802.11n(HT20)	2472	-1.45	10	Pass
NVNT	802.11n(HT40)	2422	-5.26	10	Pass
NVNT	802.11n(HT40)	2442	-3.81	10	Pass
NVNT	802.11n(HT40)	2462	-3.96	10	Pass

PSD NVNT 802.11b 2412MHz

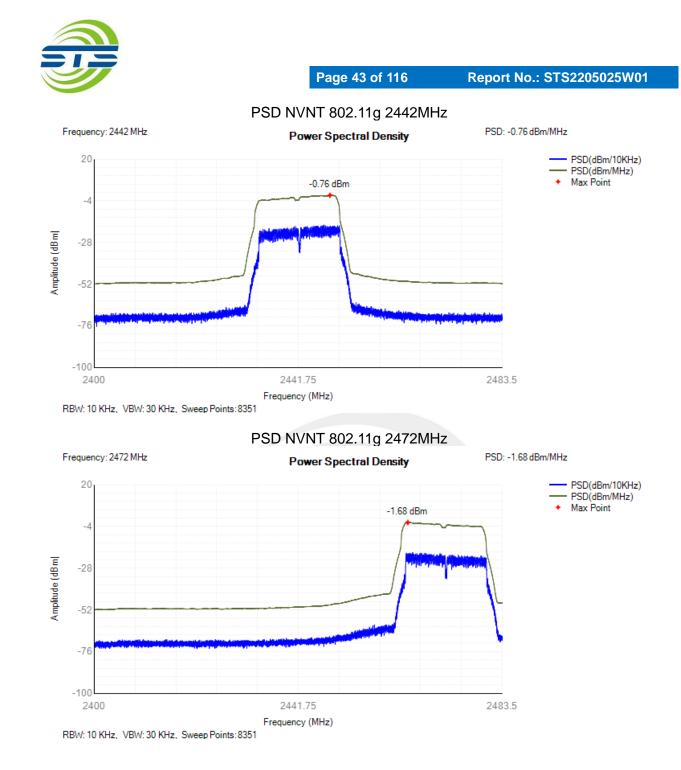
PSD: 1.88 dBm/MHz

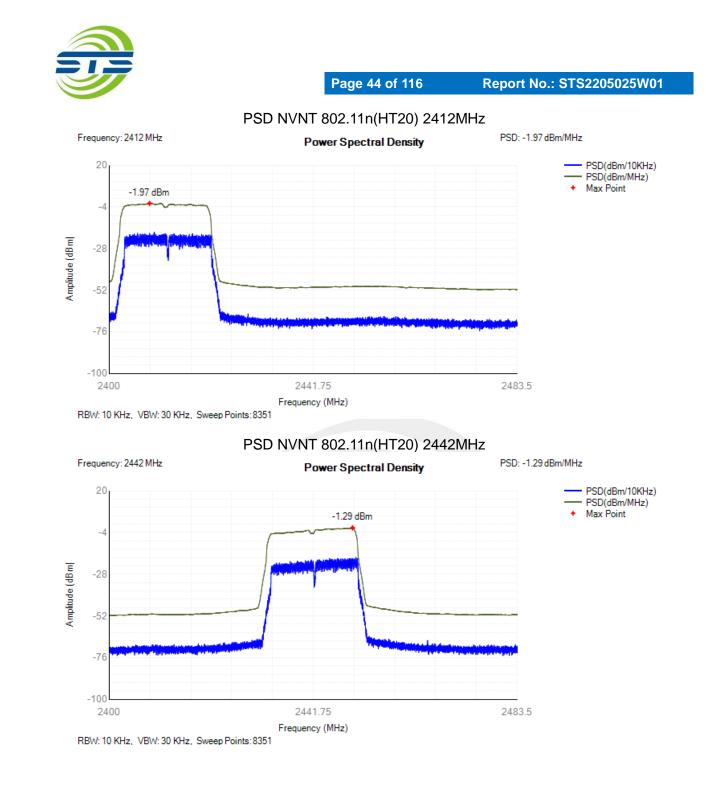


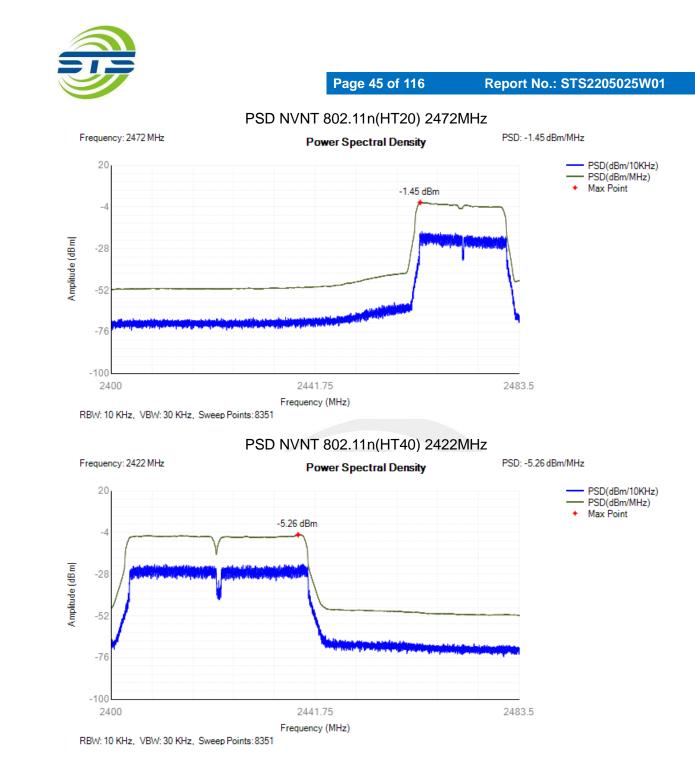
PSD NVNT 802.11b 2442MHz



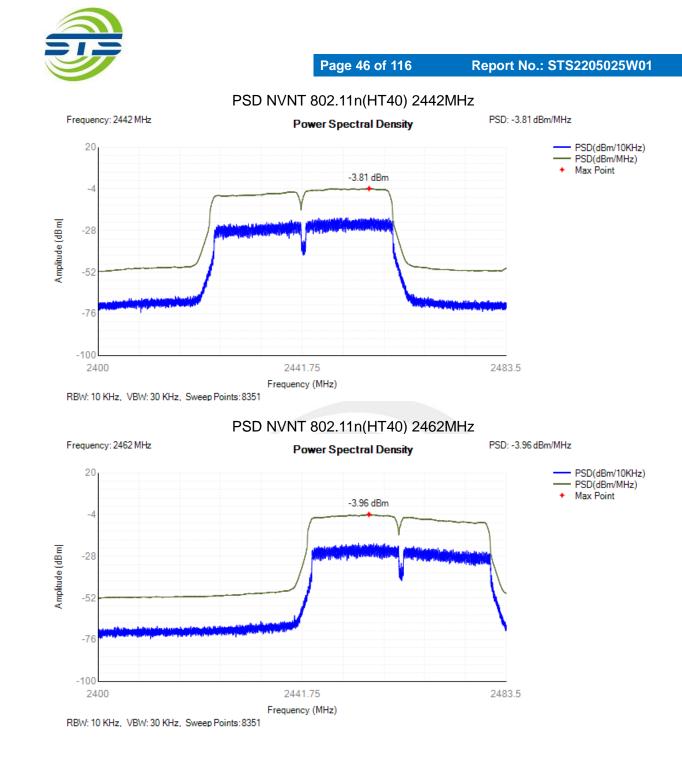
Power Spectral Density


PSD: 2.09 dBm/MHz


RBW: 10 KHz, VBW: 30 KHz, Sweep Points: 8351



Shenzhen STS Test Services Co., Ltd.



Shenzhen STS Test Services Co., Ltd.

Shenzhen STS Test Services Co., Ltd.

Shenzhen STS Test Services Co., Ltd.

Page 47 of 116

5. OCCUPIED CHANNEL BANDWIDTH

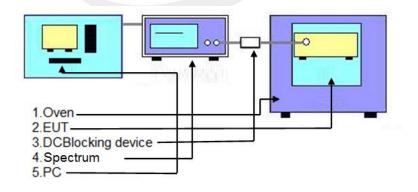
5.1 LIMIT

The Occupied Channel Bandwidth shall fall completely within the band given in 2 400 MHz to 2 483.5 MHz. In addition, for non-adaptive equipment using wide band modulations other than FHSS and with e.i.r.p. greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

5.2 TEST PROCEDURES

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.7.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.7.2 for the measurement method.
- -- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 %

(430KHz for 20 MHz channel,820KHz for 40MHz)


--Video BW:(1.3MHz for 20 MHz channel,2.7MHz for 40MHz)

--Frequency Span for frequency hopping equipment: Lowest frequency separation that is used within the hopping sequence)

--Frequency Span for other types of equipment: 2 × Nominal Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel, 80 MHz for a 40 MHz channel)

- -- Detector Mode: RMS
- --Trace Mode: Max Hold
- --Sweep time:1S

5.3 TEST SETUP

Shenzhen STS Test Services Co., Ltd.

Page 48 of 116

External Antenna

5.4 TEST RESULTS

Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	802.11b	2412	2411.985	14.711	2404.63	2419.34	2400 - 2483.5MHz	Pass
NVNT	802.11b	2472	2472.057	14.701	2464.707	2479.408	2400 - 2483.5MHz	Pass
NVNT	802.11g	2412	2411.973	16.557	2403.695	2420.251	2400 - 2483.5MHz	Pass
NVNT	802.11g	2472	2471.987	16.565	2463.704	2480.269	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT20)	2412	2411.976	17.753	2403.1	2420.853	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT20)	2472	2471.995	17.752	2463.119	2480.871	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT40)	2422	2421.961	36.321	2403.8	2440.121	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT40)	2462	2462.012	36.314	2443.855	2480.169	2400 - 2483.5MHz	Pass

Shenzhen STS Test Services Co., Ltd.

Ш

Page 49 of 116

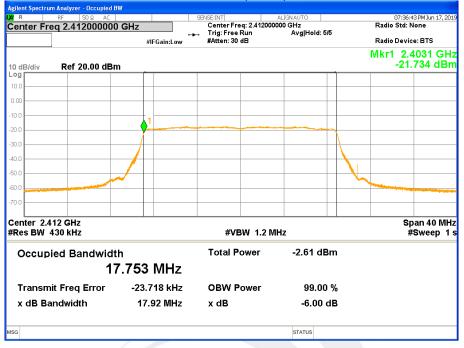
OBW NVNT 802.11b 2412MHz

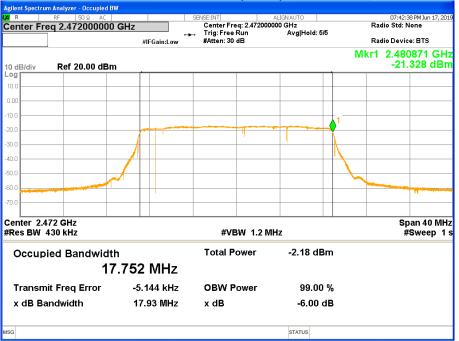
OBW NVNT 802.11b 2472MHz



Page 50 of 116

OBW NVNT 802.11g 2412MHz

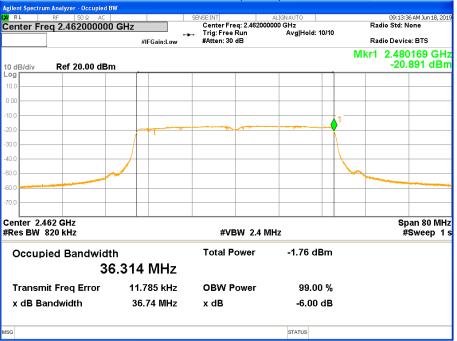

OBW NVNT 802.11g 2472MHz



Page 51 of 116

OBW NVNT 802.11n(HT20) 2412MHz

OBW NVNT 802.11n(HT20) 2472MHz



Page 52 of 116

OBW NVNT 802.11n(HT40) 2422MHz

OBW NVNT 802.11n(HT40) 2462MHz

Page 53 of 116

Report No.: STS2205025W01

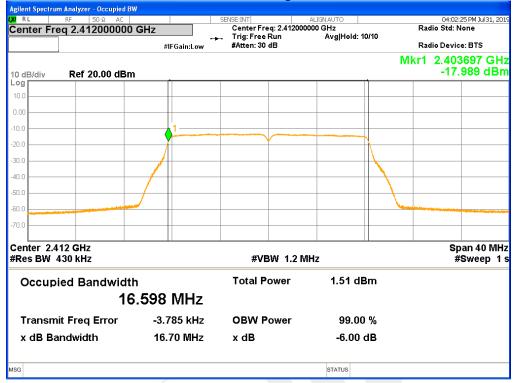
PCB Antenna								
Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	802.11b	2412	2411.966	14.147	2404.892	2419.039	2400 - 2483.5MHz	Pass
NVNT	802.11b	2472	2471.814	14.441	2464.594	2479.035	2400 - 2483.5MHz	Pass
NVNT	802.11g	2412	2411.996	16.598	2403.697	2420.295	2400 - 2483.5MHz	Pass
NVNT	802.11g	2472	2471.942	16.675	2463.605	2480.28	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT20)	2412	2412.001	17.748	2403.127	2420.875	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT20)	2472	2471.945	17.829	2463.03	2480.859	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT40)	2422	2422.043	36.378	2403.854	2440.232	2400 - 2483.5MHz	Pass
NVNT	802.11n(HT40)	2462	2461.878	36.092	2443.832	2479.924	2400 - 2483.5MHz	Pass

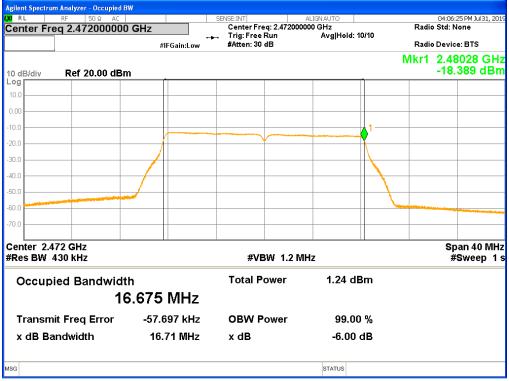
Shenzhen STS Test Services Co., Ltd.

Ш

Page 54 of 116

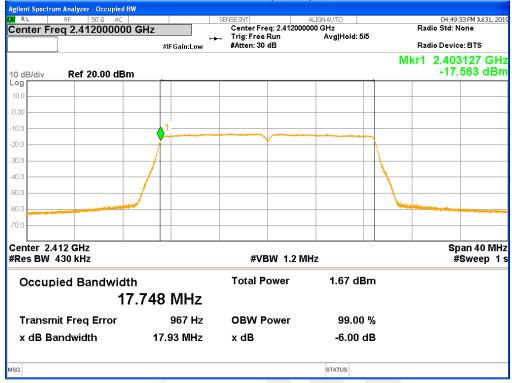
OBW NVNT 802.11b 2412MHz

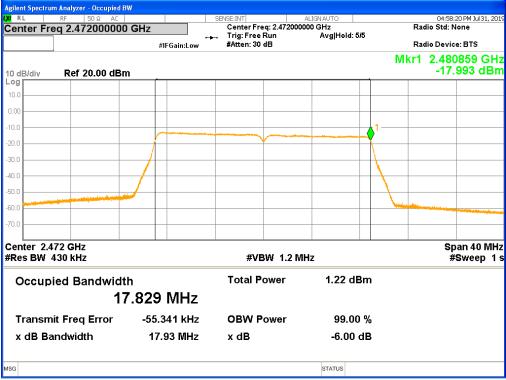

OBW NVNT 802.11b 2472MHz



Page 55 of 116

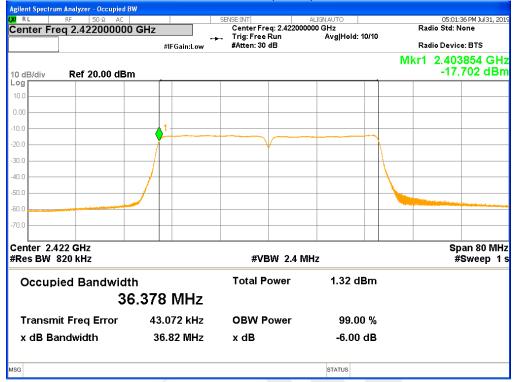
OBW NVNT 802.11g 2412MHz


OBW NVNT 802.11g 2472MHz



Page 56 of 116

OBW NVNT 802.11n(HT20) 2412MHz


OBW NVNT 802.11n(HT20) 2472MHz

Page 57 of 116

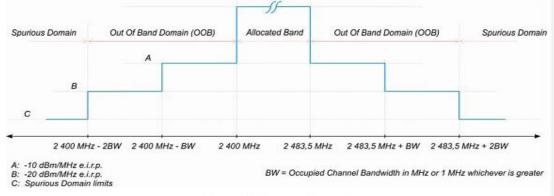
OBW NVNT 802.11n(HT40) 2422MHz

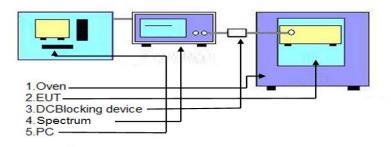
OBW NVNT 802.11n(HT40) 2462MHz

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMIT

Clause	Frequency	Limit
4.3.2.8.3	2400-BW~2400 2483.5~2483.5+BW	-10dBm/MHz
	2400-2BW~2400-BW 2483.5+BW~2483.5+2BW	-20dBm/MHz
	<2400-2BW >2483.5+2BW	-30dBm/MHz



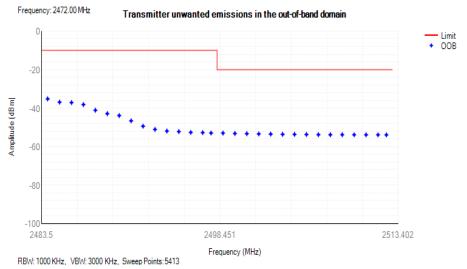

Figure 1: Transmit mask

6.2 TEST PROCEDURES

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.8.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.8.2 for the measurement method.
- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: 2 484 MHz
- Span: 0 Hz
- Resolution BW: 1 MHz
- Filter mode: Channel filter
- Video BW: 3 MHz
- Detector Mode: RMS
- Trace Mode: Max Hold
- Sweep Mode: Continuous
- Sweep Points: Sweep Time [s] / (1 μ s) or 5 000 whichever is greater
- Trigger Mode: Video trigger; in case video triggering is not possible, an external trigger source may be used

- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

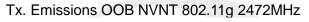
6.3 TEST SETUP

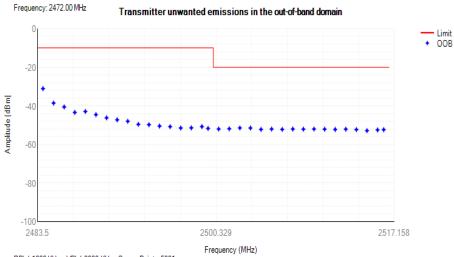


6.4 TEST RESULTS

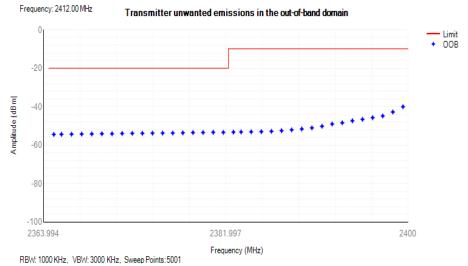
External Antenna Tx. Emissions OOB NVNT 802.11b 2412MHz



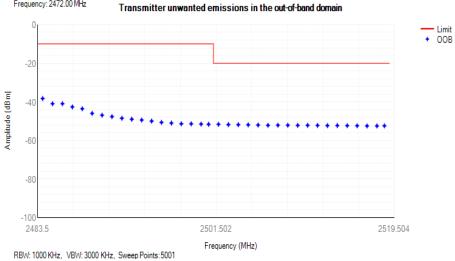



Shenzhen STS Test Services Co., Ltd.

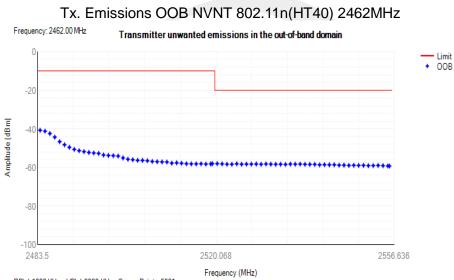
Tx. Emissions OOB NVNT 802.11g 2412MHz



RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001


Shenzhen STS Test Services Co., Ltd.

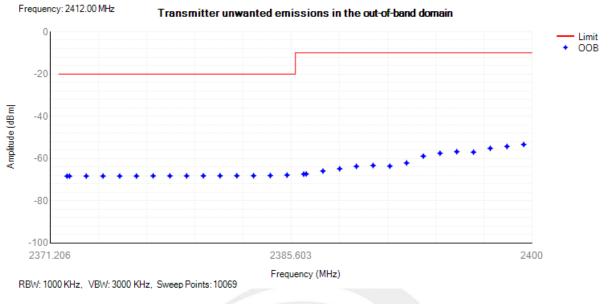
Tx. Emissions OOB NVNT 802.11n(HT20) 2412MHz

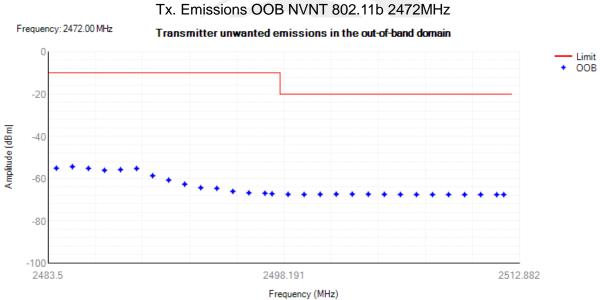


Shenzhen STS Test Services Co., Ltd.

Tx. Emissions OOB NVNT 802.11n(HT40) 2422MHz

RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

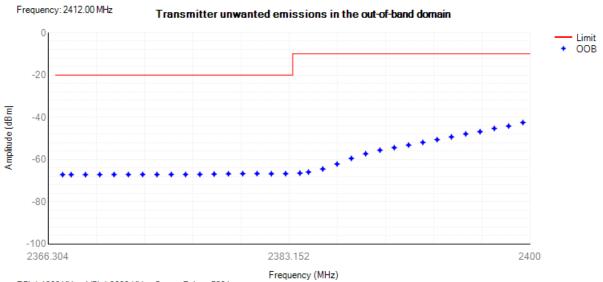

Shenzhen STS Test Services Co., Ltd.



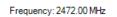
Page 63 of 116

Report No.: STS2205025W01

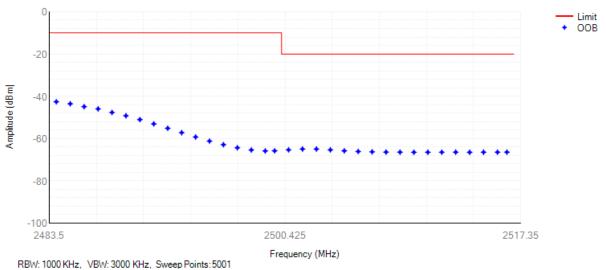
PCB Antenna Tx. Emissions OOB NVNT 802.11b 2412MHz


RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 10057

Shenzhen STS Test Services Co., Ltd.

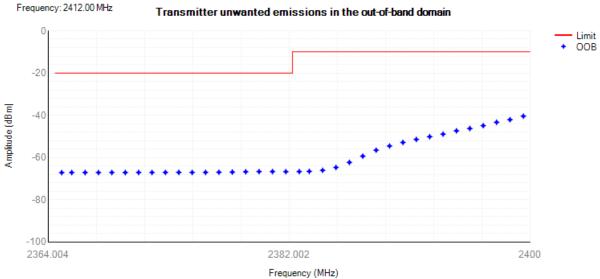

Tx. Emissions OOB NVNT 802.11g 2412MHz

Page 64 of 116

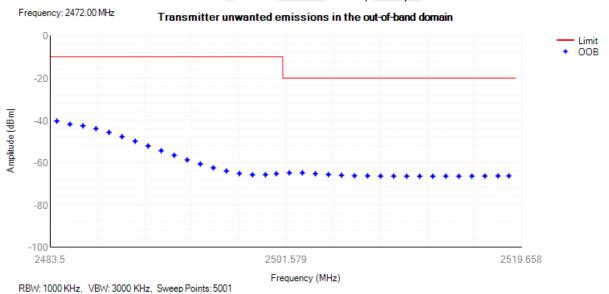


RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

Tx. Emissions OOB NVNT 802.11g 2472MHz

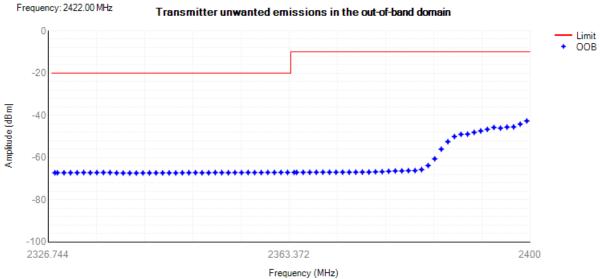

Transmitter unwanted emissions in the out-of-band domain

Shenzhen STS Test Services Co., Ltd.

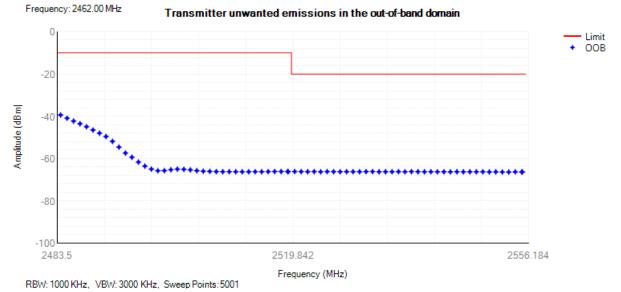


Tx. Emissions OOB NVNT 802.11n(HT20) 2412MHz

RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001


Tx. Emissions OOB NVNT 802.11n(HT20) 2472MHz

Shenzhen STS Test Services Co., Ltd.


Tx. Emissions OOB NVNT 802.11n(HT40) 2422MHz

RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

1

Tx. Emissions OOB NVNT 802.11n(HT40) 2462MHz

Shenzhen STS Test Services Co., Ltd.

Page 67 of 116

Report No.: STS2205025W01

7. ADAPTIVE (CHANNEL ACCESS MECHANISM)

7.1 LIMIT

The frequency range of the equipment is determined by the lowest and highest

Non-LBT based Detect and Avoid:

1. The channel shall remain unavailable for a minimum time equal to 1 s after which the channel may be considered again as an 'available' channel.

2. COT ≤ 40ms;

3. Idle Period = 5% of COT;

4. Detection threshold level = -70 dBm/MHz + (20 dBm - Pout e.i.r.p.)/1 MHz (Pout in dBm).

LBT based Detect and Avoid:

- 1. CCA observation time declared by the supplier:
 - a. If the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The equipment shall observe the operating channel for the duration of the CCA observation time which shall be not less than 18 μs.
- 2. COT = 1~10 ms;
- 3. Idle Period = 5% of COT;

4. Detection threshold level = -70 dBm/MHz + (20 dBm - Pout e.i.r.p.)/1 MHz (Pout in dBm).

- LBT based Detect and Avoid (Load Based Equipment):
- 1. CCA declared by the manufacturer:
 - a. If the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The equipment shall observe the operating channel for the duration of the CCA observation time which shall be not less than 18 μ s.
 - b. If the equipment finds the channel occupied, it shall not transmit on this channel, The equipment shall perform an Extended CCA check in which the channel is observed for a random duration in the range between 18 µs and at least 160 µs.
- 2. COT ≤ 13 ms;
- 3. Detection threshold level = -70 dBm/MHz + (20 dBm Pout e.i.r.p.)/1 MHz (Pout in dBm).

Short Control Signalling Transmissions:

Short Control Signalling Transmissions shall have a maximum duty cycle TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.

7.2 TEST PROCEDURES

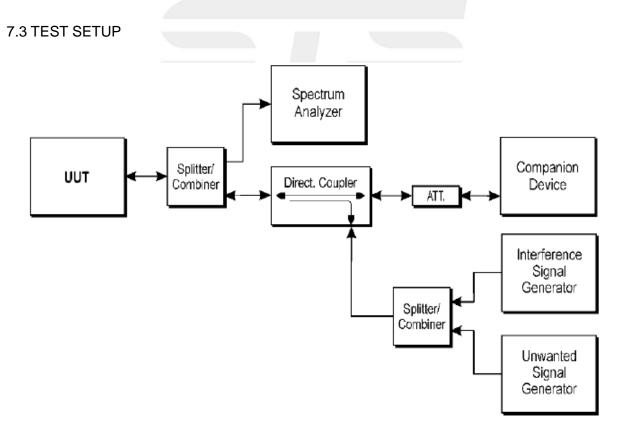
- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.6.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.6.2 for the measurement method.

Page 68 of 116

3. The spectrum analyzer sweep was triggered by the start of the interfering signal, with the interfering signal present, a 100 % duty cycle CW signal is inserted as the blocking signal.

- RBW: ≥ Occupied Channel Bandwidth (if the analyzer does not support this setting, the highest available setting shall be used)

- RBW: use next available RBW setting below the measured Occupied Channel Bandwidth


- Filter type: Channel Filter

--- VBW: 3 × RBW (if the analyser does not support this setting, the highest available setting shall be used)

- RBW:8M/ VBW:40M (50MHz is the MAX)
- Detector Mode: RMS
- Centre Frequency: Equal to the hopping frequency to be tested.
- Span: 0 Hz

- Sweep time: > Channel Occupancy Time of the UUT. If the Channel Occupancy Time is non-contiguous (non-LBT based equipment), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out

- Trace Mode: Clear/Write
- Trigger Mode: Video

a. WLAN is normal transmission

- b. interference shall be injected -> WLAN shall stop transmission.
- c. blocking shall be injected -> WLAN does not resume any normal transmission
- d. Removing the interference signal

Shenzhen STS Test Services Co., Ltd.

Page 69 of 116

Report No.: STS2205025W01

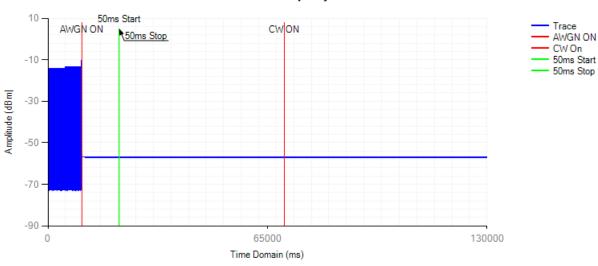
7.4 TEST RESULT

External Antenna

			External,					
Adaptivity								
Condition	Mode	Frequency	AWGN	CW	Short	Short	Limit	Verdict
		(MHz)	Level	Level	Control	Control	(%)	
			(dBm)	(dBm)	Width	Ratio(%)		
					(ms)			
NVNT	802.11b	2412	-64.4	-35	0	0	<=10	Pass
NVNT	802.11b	2472	-65.81	-35	0	0	<=10	Pass
NVNT	802.11g	2412	-63.84	-35	0	0	<=10	Pass
NVNT	802.11g	2472	-65.3	-35	0	0	<=10	Pass
NVNT	802.11n(HT20)	2412	-62.81	-35	0	0	<=10	Pass
NVNT	802.11n(HT20)	2472	-63.8	-35	0	0	<=10	Pass
NVNT	802.11n(HT40)	2422	-62.63	-35	0	0	<=10	Pass
NVNT	802.11n(HT40)	2462	-63.36	-35	0	0	<=10	Pass

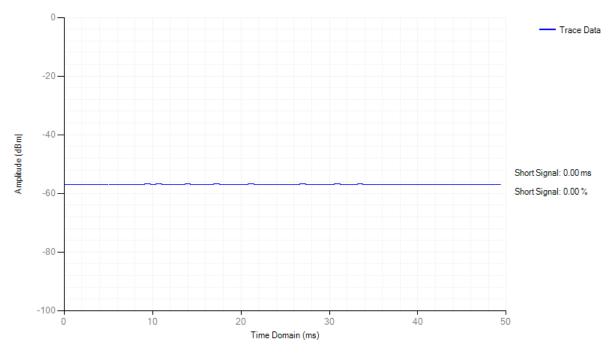
Shenzhen STS Test Services Co., Ltd.

Ш



Page 70 of 116

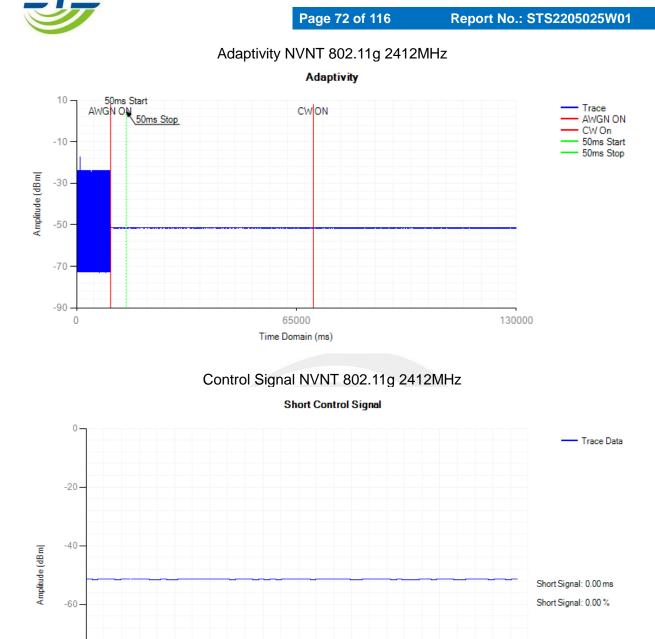
Report No.: STS2205025W01


Adaptivity NVNT 802.11b 2412MHz

Adaptivity



Control Signal NVNT 802.11b 2412MHz


Short Control Signal

Shenzhen STS Test Services Co., Ltd.

Shenzhen STS Test Services Co., Ltd.

Shenzhen STS Test Services Co., Ltd.

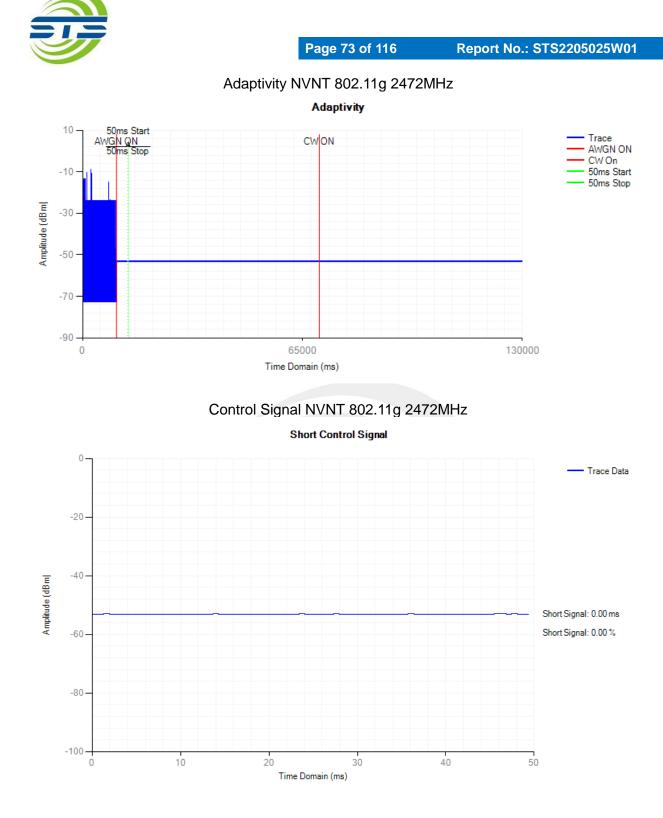
-80

-100

Ó

10

20

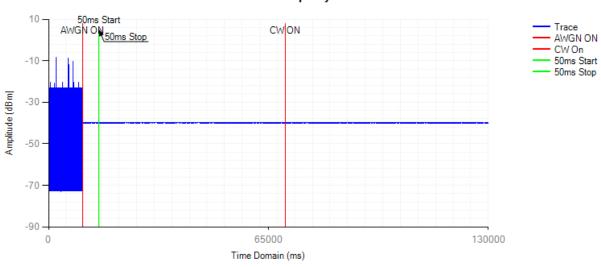

Time Domain (ms)

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

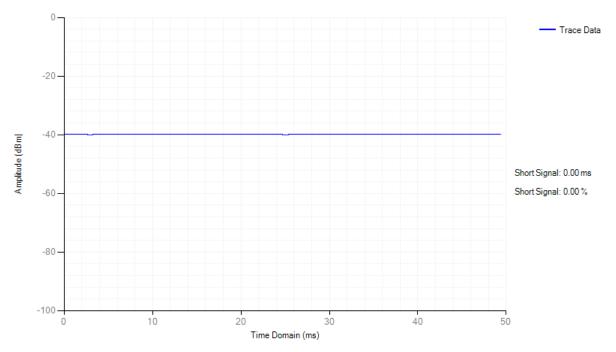
40

50

30



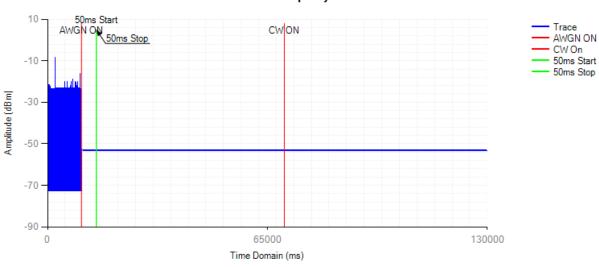
Page 74 of 116

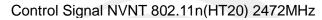

Adaptivity NVNT 802.11n(HT20) 2412MHz

Adaptivity

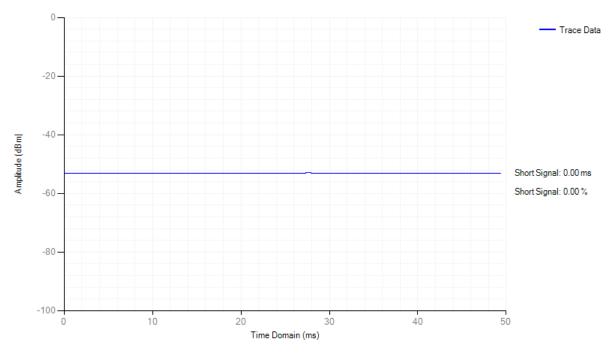
Short Control Signal

Shenzhen STS Test Services Co., Ltd.




Page 75 of 116

Report No.: STS2205025W01

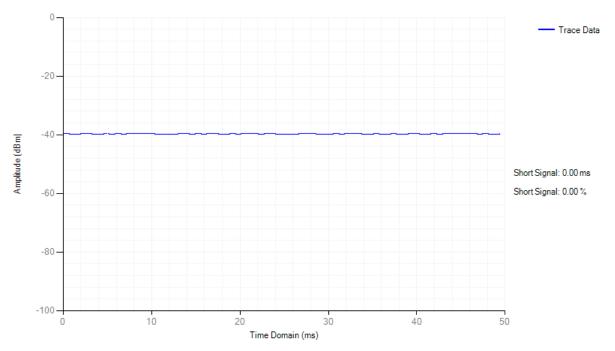

Adaptivity NVNT 802.11n(HT20) 2472MHz

Adaptivity

Short Control Signal

Shenzhen STS Test Services Co., Ltd.

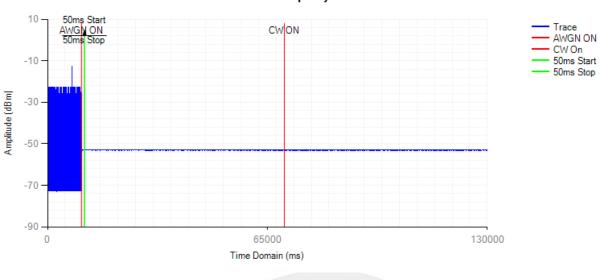
Page 76 of 116


Adaptivity NVNT 802.11n(HT40) 2422MHz

Adaptivity

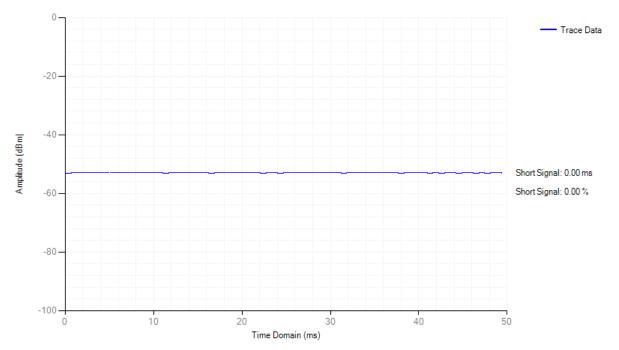
Short Control Signal

Shenzhen STS Test Services Co., Ltd.



Page 77 of 116

Report No.: STS2205025W01


Adaptivity NVNT 802.11n(HT40) 2462MHz

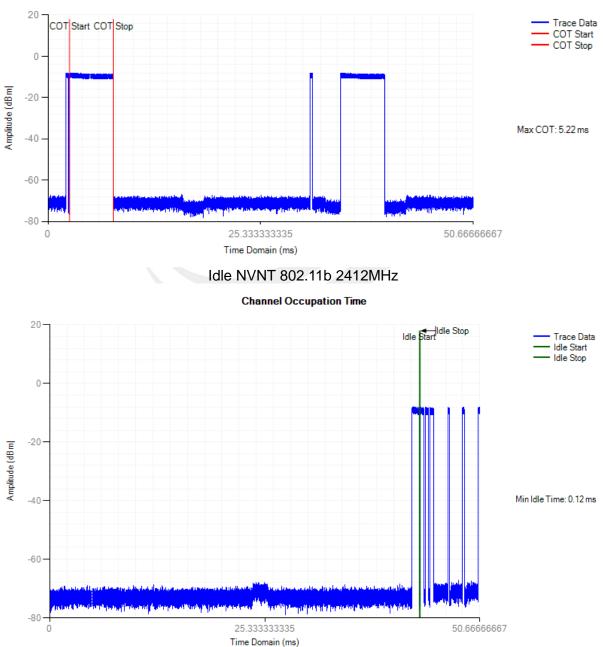
Adaptivity

Control Signal NVNT 802.11n(HT40) 2462MHz

Short Control Signal

Shenzhen STS Test Services Co., Ltd.

П

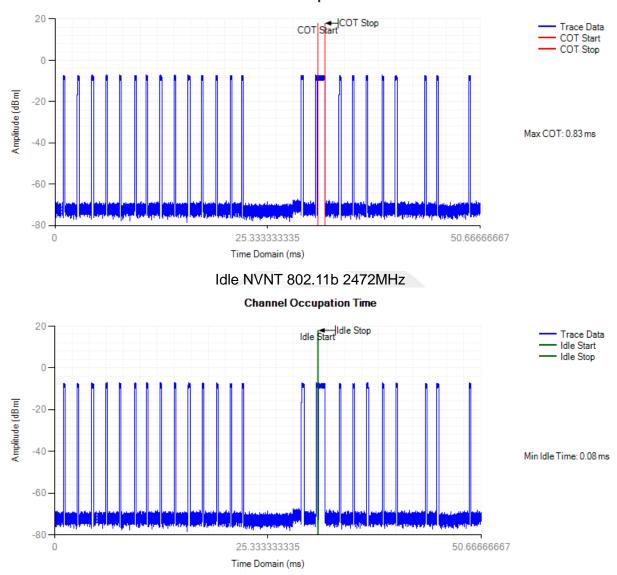

Page 78 of 116

Report No.: STS2205025W01

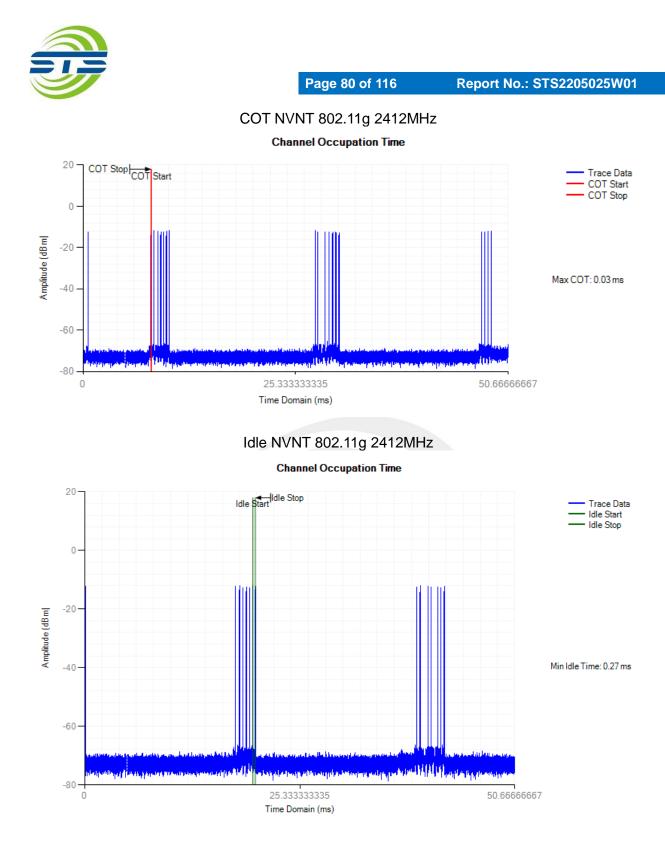
Adaptivity COT Channel Occupancy Time

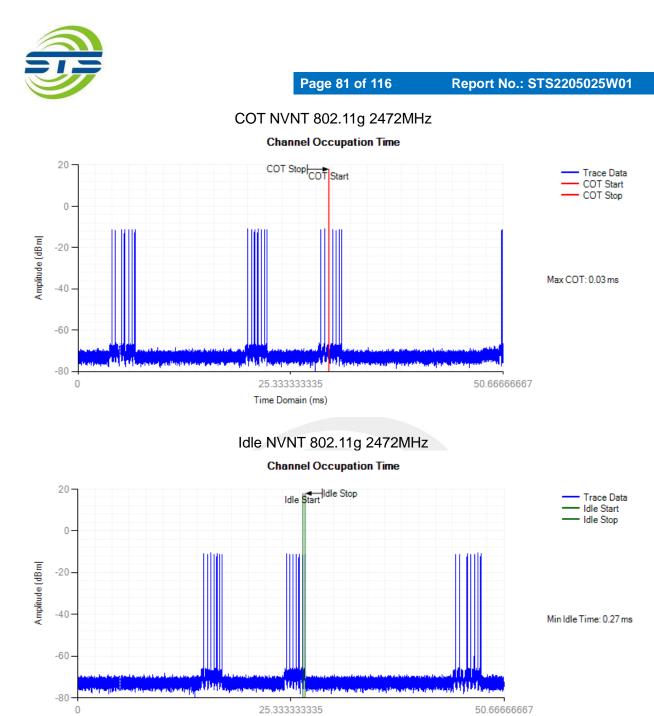
			Max	Limit	Min Idle	Limit Idle	
Condition	Mode		COT	COT	Time	Time	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	802.11b	2412	5.219	<=13	0.115	>0.018	Pass
NVNT	802.11b	2472	0.833	<=13	0.081	>0.018	Pass
NVNT	802.11g	2412	0.029	<=13	0.27	>0.018	Pass
NVNT	802.11g	2472	0.029	<=13	0.269	>0.018	Pass
NVNT	802.11n(HT20)	2412	0.113	<=13	0.317	>0.018	Pass
NVNT	802.11n(HT20)	2472	0.114	<=13	0.257	>0.018	Pass
NVNT	802.11n(HT40)	2422	0.044	<=13	0.087	>0.018	Pass
NVNT	802.11n(HT40)	2462	0.044	<=13	0.269	>0.018	Pass

COT NVNT 802.11b 2412MHz

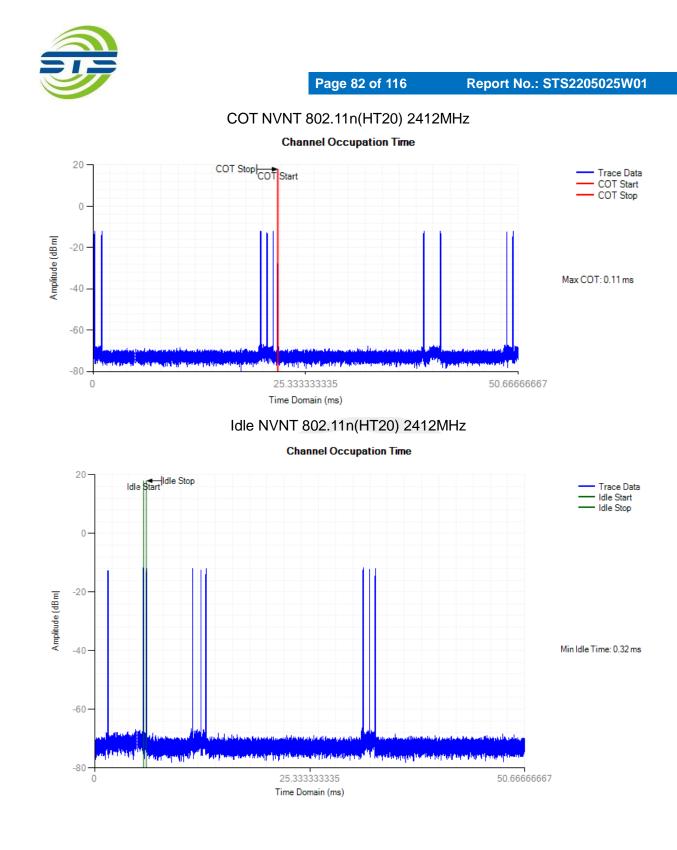

Channel Occupation Time

Shenzhen STS Test Services Co., Ltd.



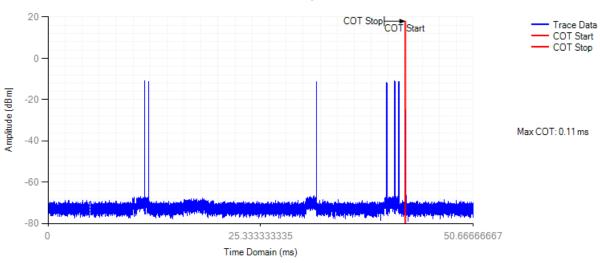

COT NVNT 802.11b 2472MHz

Channel Occupation Time


Shenzhen STS Test Services Co., Ltd.

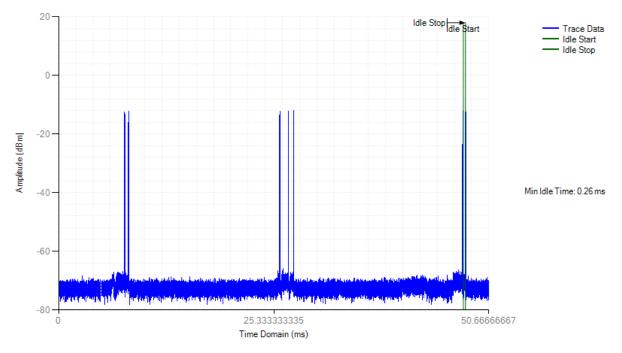
Time Domain (ms)

Shenzhen STS Test Services Co., Ltd.



Page 83 of 116

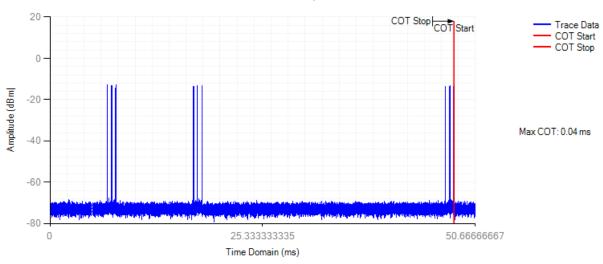
Report No.: STS2205025W01


COT NVNT 802.11n(HT20) 2472MHz

Idle NVNT 802.11n(HT20) 2472MHz

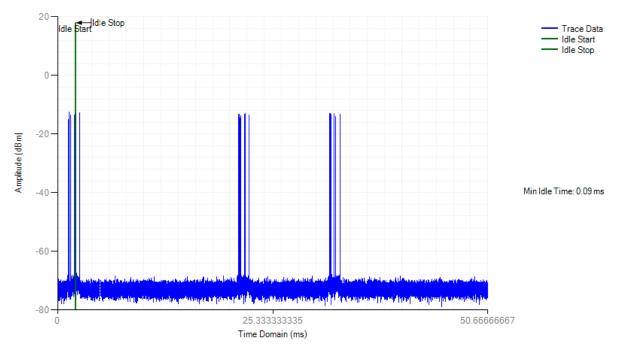
Channel Occupation Time

Shenzhen STS Test Services Co., Ltd.



Page 84 of 116

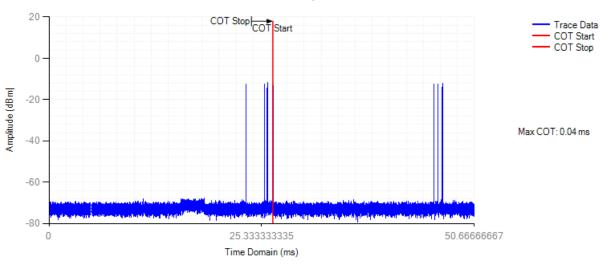
Report No.: STS2205025W01


COT NVNT 802.11n(HT40) 2422MHz

Idle NVNT 802.11n(HT40) 2422MHz

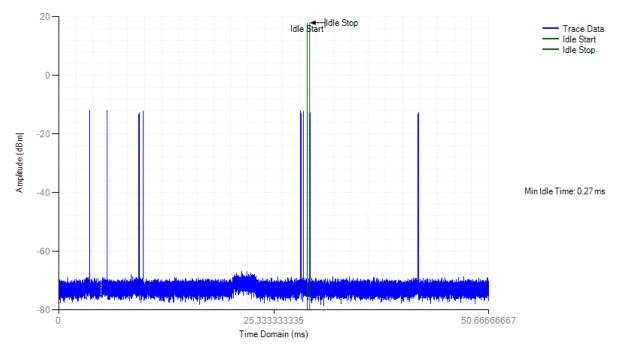
Channel Occupation Time

Shenzhen STS Test Services Co., Ltd.



Page 85 of 116

Report No.: STS2205025W01

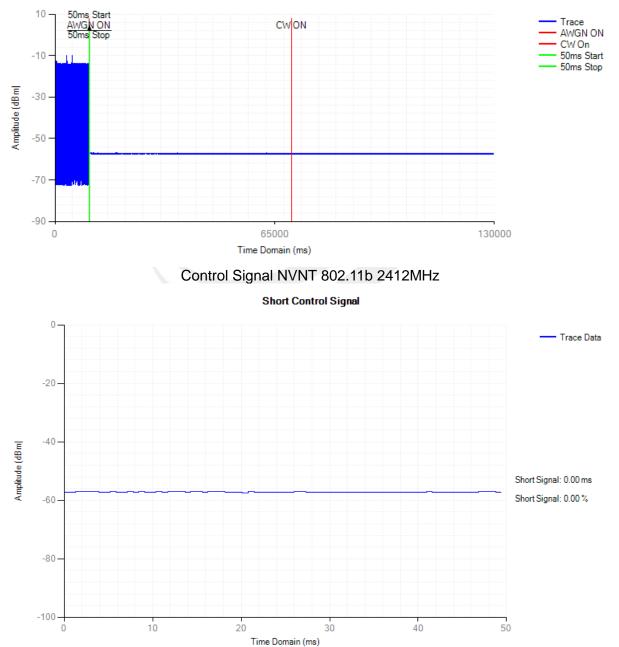

COT NVNT 802.11n(HT40) 2462MHz

Idle NVNT 802.11n(HT40) 2462MHz

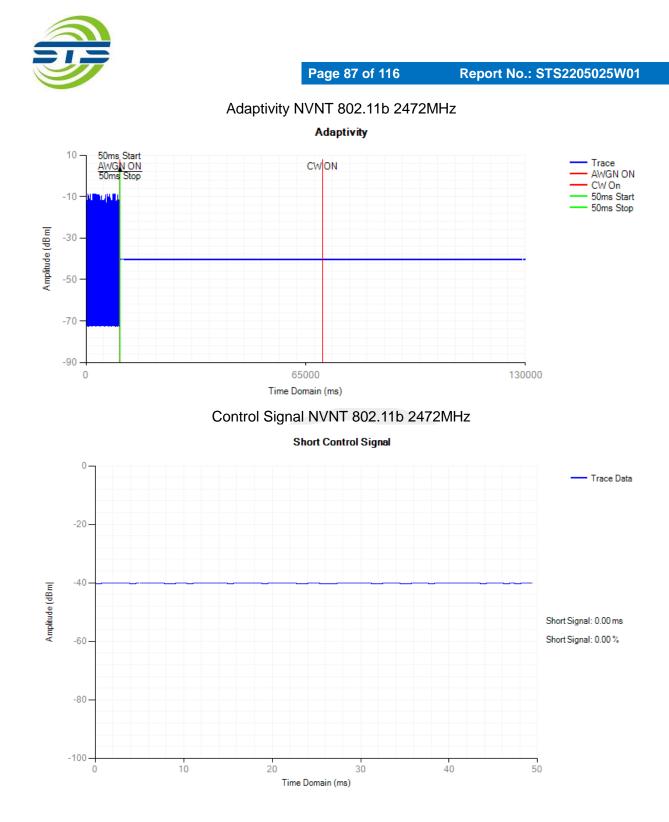
Channel Occupation Time

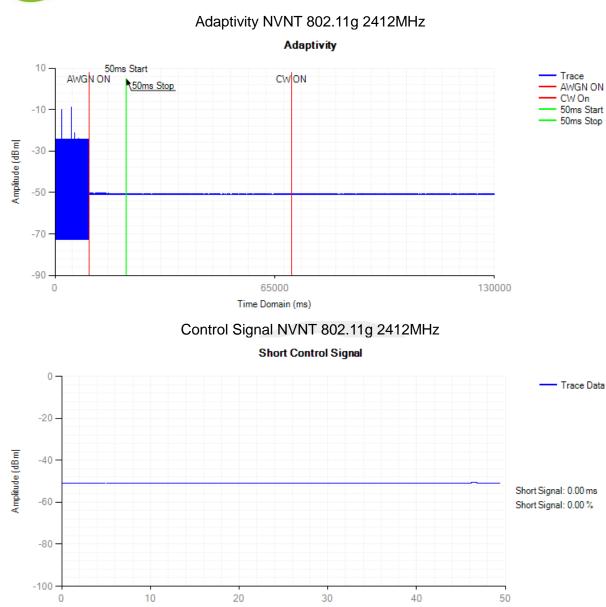
Shenzhen STS Test Services Co., Ltd.

Page 86 of 116


Report No.: STS2205025W01

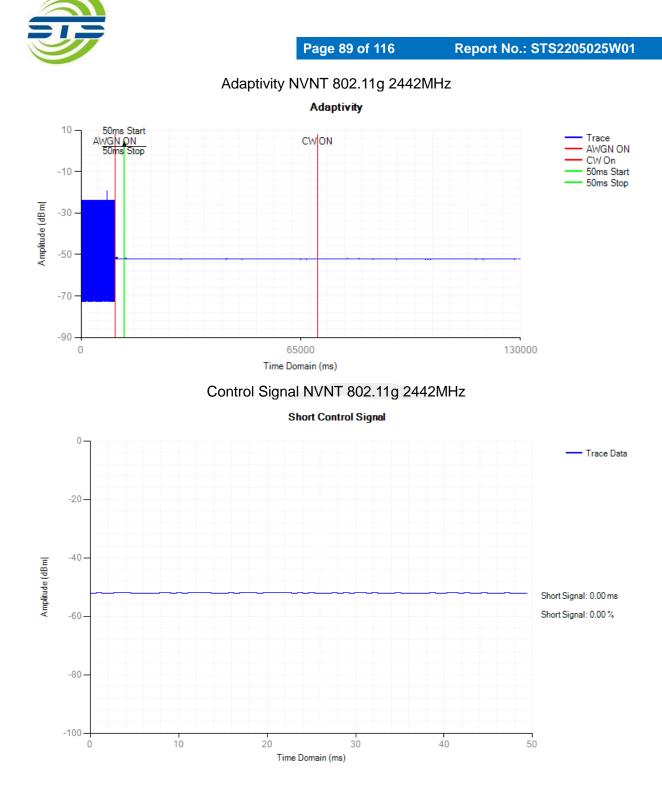
PCB Antenna

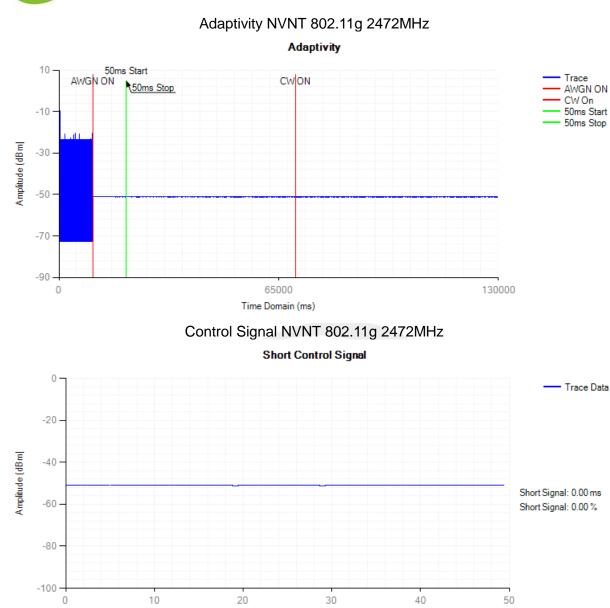

Note: 802.11n(HT20), 802.11n(HT40) power less than 10dBm, not apply. Adaptivity


Condition	Mode	Frequency (MHz)	AWGN Level (dBm)	CW Level (dBm)	Short Control Width (ms)	Short Control Ratio(%)	Limit (%)	Verdict
NVNT	802.11b	2412	-60.15	-35	0	0	<=10	Pass
NVNT	802.11b	2472	-60.23	-35	0	0	<=10	Pass
NVNT	802.11g	2412	-59.2	-35	0	0	<=10	Pass
NVNT	802.11g	2442	-60.09	-35	0	0	<=10	Pass
NVNT	802.11g	2474	-59.22	-35	0	0	<=10	Pass

Adaptivity NVNT 802.11b 2412MHz

Adaptivity




Page 88 of 116

Report No.: STS2205025W01

Time Domain (ms)

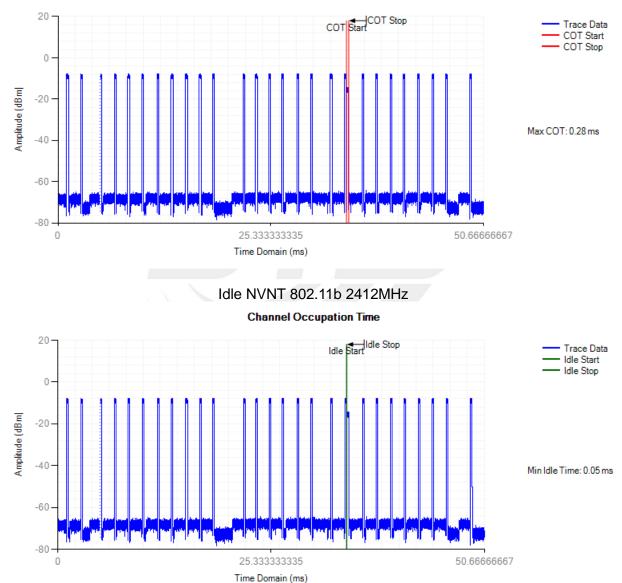
Shenzhen STS Test Services Co., Ltd.

Page 90 of 116

Report No.: STS2205025W01

Time Domain (ms)

Shenzhen STS Test Services Co., Ltd.

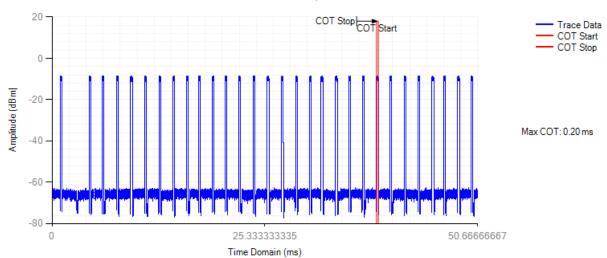

Page 91 of 116 Report No.: STS2205025W01

Adaptivity COT Channel Occupancy Time

Condition	Mode	Frequency (MHz)	Max COT (ms)	Limit COT (ms)	Min Idle Time (ms)	Limit Idle Time (ms)	Verdict
NVNT	802.11b	2412	0.281	<=13	0.052	>0.018	Pass
NVNT	802.11b	2472	0.204	<=13	1.129	>0.018	Pass
NVNT	802.11g	2412	0.115	<=13	0.041	>0.018	Pass
NVNT	802.11g	2442	0.029	<=13	0.269	>0.018	Pass
NVNT	802.11g	2472	0.068	<=13	0.317	>0.018	Pass

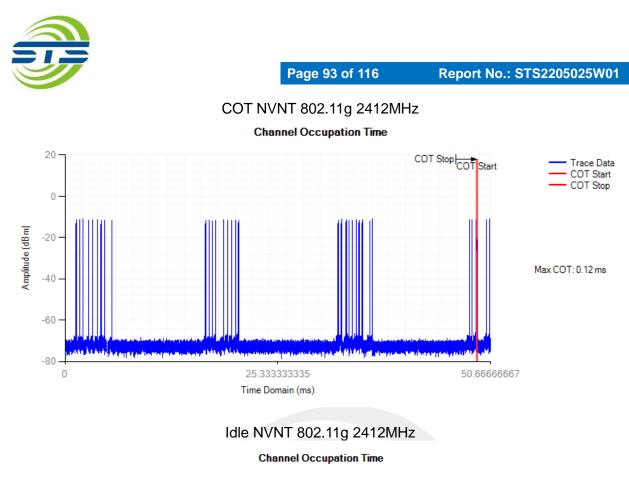
COT NVNT 802.11b 2412MHz

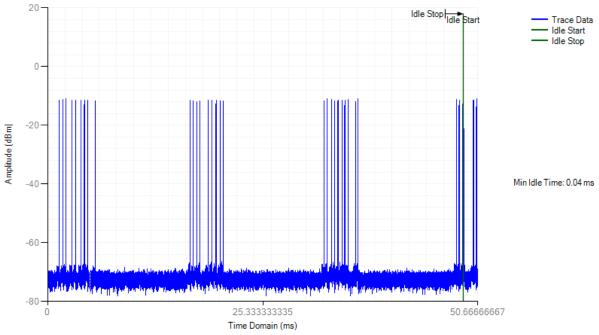
Channel Occupation Time

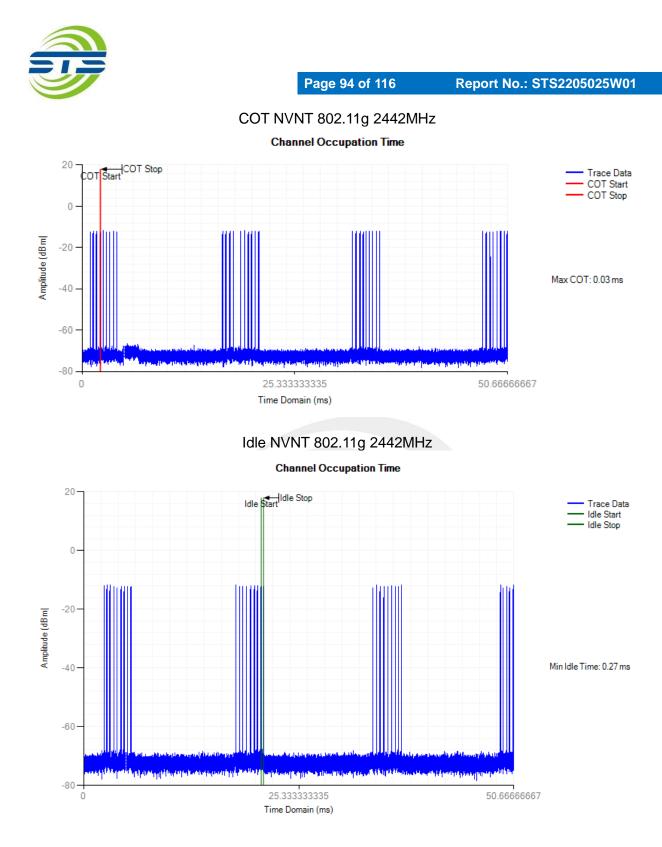


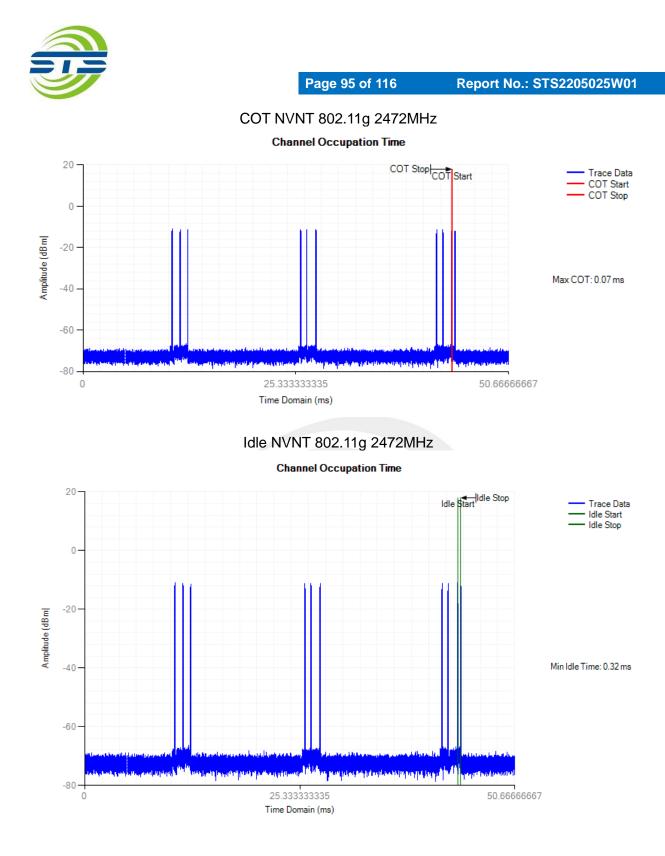
Page 92 of 116

COT NVNT 802.11b 2472MHz




Idle NVNT 802.11b 2472MHz


Channel Occupation Time



Shenzhen STS Test Services Co., Ltd.

8. SPURIOUS EMISSIONS - TRANSMITTER

8.1 LIMIT

Frequency range	Maximum power, e.r.p(≤1 GHz) e.i.r.p(> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 KHz
47 MHz to 74 MHz	-54 dBm	100 KHz
74 MHz to 87.5 MHz	-36 dBm	100 KHz
87.5 MHz to 118 MHz	-54 dBm	100 KHz
118 MHz to 174 MHz	-36 dBm	100 KHz
174 MHz to 230 MHz	-54 dBm	100 KHz
470 MHz to 694 MHz	-36 dBm	100 KHz
694 MHz to 1 GHz	-54 dBm	100 KHz
862 MHz to 1 GHz	-36 dBm	100 KHz
1 GHz to 12.75 GHz	-30 dBm	1 MHz

8.2 TEST PROCEDURES

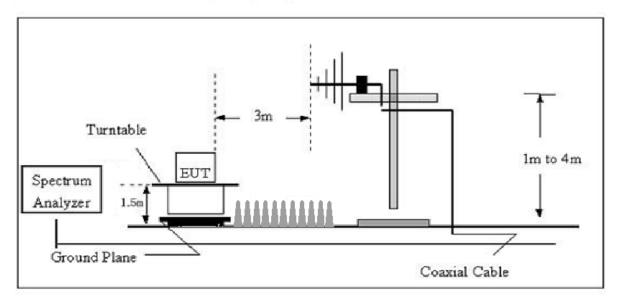
1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.9.1 for the test conditions.

2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.9.2 for the measurement method.

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting			
Frequency Start to Stop	30 MHz to 1000 MHz 1000 MHz to 12750MHz			
Resolution bandwidth	100 kHz 1 MHz			
Video bandwidth	300 kHz 3 MHz			
Filter type	3 dB (Gaussian)			
Detector mode	Peak			
Trace Mode	Max Hold			
Sweep Points	$\geqslant~$ 19 400 (Set as 20000)	≥ 23 500 (Set as 24000)		
Sweep Time	For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, Below 1GHz such that for each 100 kHz frequency step, Above 1GHz such that for each 1MHz frequency step the measurement time is greater than two transmissions of the UUT, on any channel			

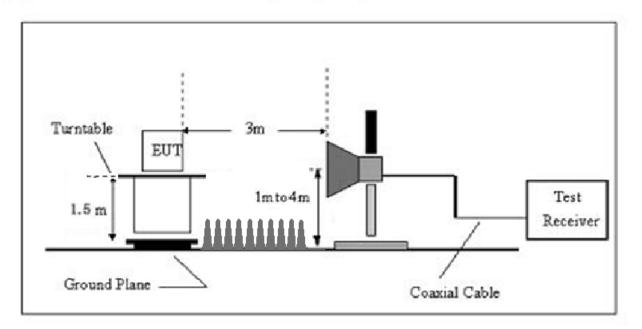
Page 97 of 116


Report No.: STS2205025W01

- a. The EUT was placed on the top of the turntable in Semi Anechoic Room.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~12750MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.
- I. EUT Orthogonal Axis:
- "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand.

8.3 TEST SETUP

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz



Report No.: STS2205025W01

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

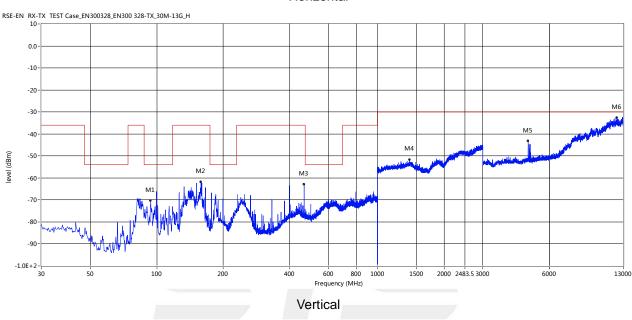
8.4 EUT OPERATION DURING TEST

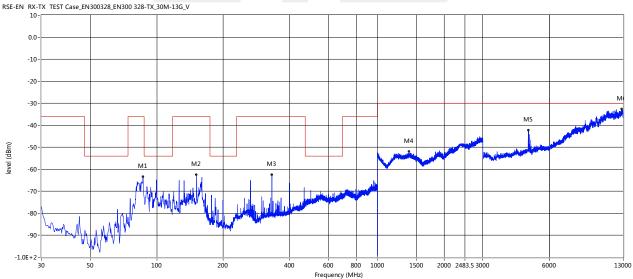
- 1. The EUT was programmed to be in continuous transmitting mode.
- 2. For the initial investigation on the highest, lowest frequency, no significant differences in spurious
- emissions were observed between these 2 channels. The worst test data was shown in report.
- 3. There is a filter used during the test, the fundamental signals will be not shown in the plot.

Report No.: STS2205025W01

}

8.5 TEST RESULTS

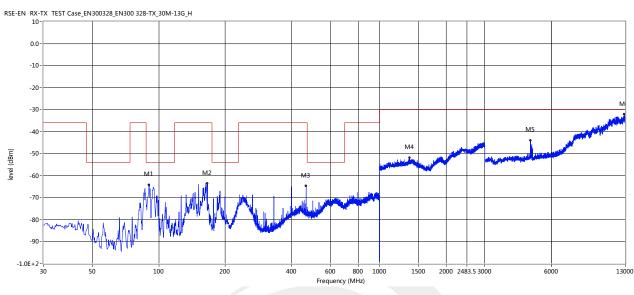

Remark: Scan with 802.11b, 802.11g, 802.11n (HT-20), 802.11n (HT-40), the worst case is 802.11b.


External Antenna

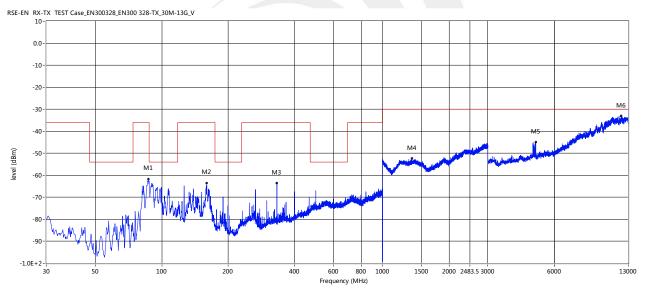
Radiated Emissions:

TX 802.11 b/2412MHz

Horizontal



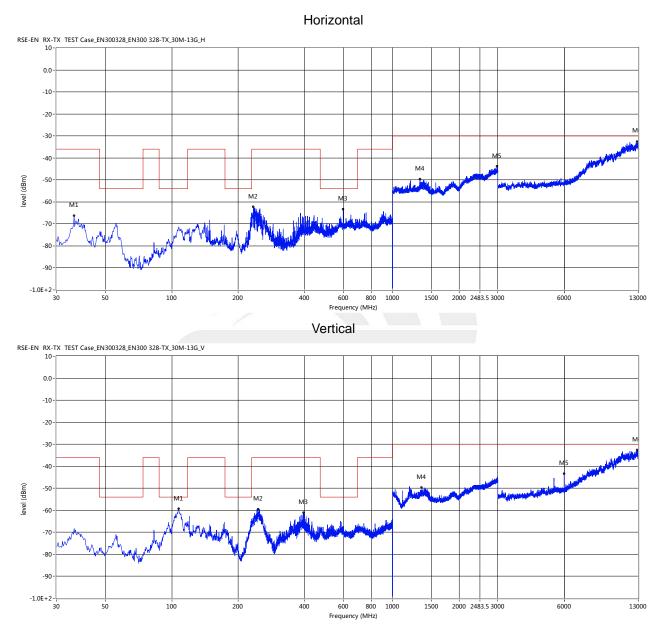
Page 100 of 116


Report No.: STS2205025W01

TX 802.11 b/2472MHz

Vertical

Shenzhen STS Test Services Co., Ltd.

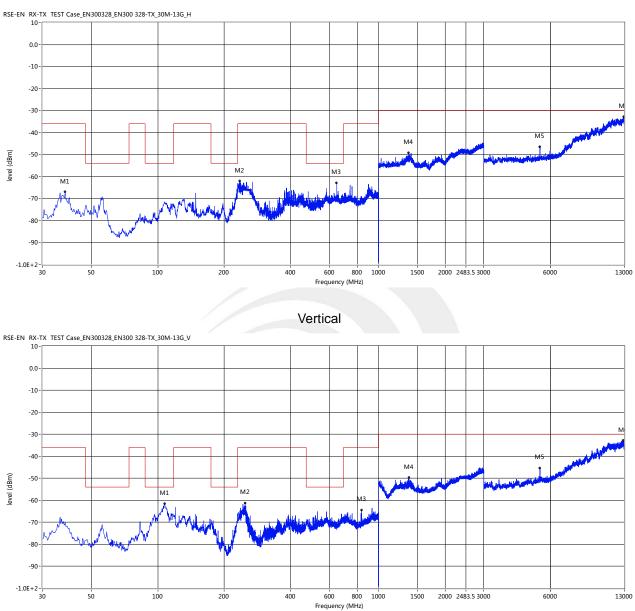


Report No.: STS2205025W01

PCB Antenna

Radiated Emissions:

TX 802.11 b/2412MHz



Report No.: STS2205025W01

TX 802.11 b/2472MHz

Shenzhen STS Test Services Co., Ltd.

9. SPURIOUS EMISSIONS - RECEIVER

9.1 LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.2.10.3	Spurious emissions	30-1000	-57dBm
	(radiated)	1000-12750	-47dBm

9.2 TEST PROCEDURES

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.10.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.10.2 for the measurement method.

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting				
Frequency Start to Stop	30 MHz to 1000 MHz	1000 MHz to 12750MHz			
Resolution bandwidth	100 kHz	1 MHz			
Video bandwidth	300 kHz 3 MHz				
Filter type	3 dB (Gaussian)				
Detector mode	Peak				
Trace Mode	Max Hold				
Sweep Points	≥ 19 400 (Set as 20000)	≥ 23 500 (Set as 24000)			
Sweep Time	For non continuous transmissions (duty cycle less than 100 %), the sweet time shall be sufficiently long, Below 1GHz such that for each 100 kHz frequency step, Above 1GHz such that for each 1MHz frequency step th measurement time is greater than two transmissions of the UUT, on any channel				

Shenzhen STS Test Services Co., Ltd.

Page 104 of 116

}

- 116 Report No.: STS2205025W01
- a. The EUT was placed on the top of the turntable in Semi Anechoic Room.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~12750MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.
- j. EUT Orthogonal Axis:
- "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand.

9.3 TEST SETUP

This test setup layout is the same as that shown in section 8.4

9.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

Report No.: STS2205025W01

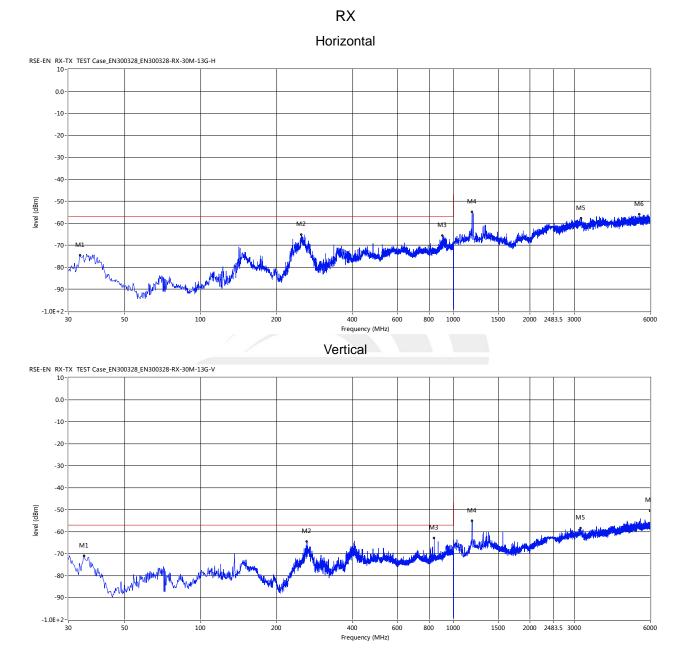
9.5 TEST RESULTS

Remark: The all data rate modes had been test, but only worse test data was recorded in the test report.

External Antenna

Radiated Emissions:

RX



Page 106 of 116

Report No.: STS2205025W01

PCB Antenna

Radiated Emissions:

Shenzhen STS Test Services Co., Ltd.

10. RECEIVER BLOCKING

10.1 LIMIT

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Receiver Category 1

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment					
Wanted signal mean power	Blocking signal	Blocking signal power	Type of blocking		
from companion device (dBm)	frequency	(dBm)	signal		
(see notes 1 and 4)	(MHz)	(see note 4)	_		
(-133 dBm + 10 ×					
log10(OCBW)) or -68 dBm	2 380				
whichever is less	2 504				
(see note 2)					
	2 300	-34	CW		
(-139 dBm + 10 ×	2 330				
log10(OCBW)) or -74 dBm	2 360				
whichever is less	2 524				
(see note 3)	2 584				
/	2 674				

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Report No.: STS2205025W01

Receiver Category 2

Table 7: Receiver Blocking parameters receiver Category 2 equipment

Wanted signal mean power	Blocking	Blocking				
from companion device (dBm)	signal	signal power	Type of blocking			
(see notes 1 and 3)	frequency	(dBm)	signal			
(See flotes 1 and 3)	(MHz)	(see note 3)				
(-139 dBm + 10 ×	2 380					
log10(OCBW) + 10 dB) or	2 504	24	CW			
(-74 dBm + 10 dB) whichever	2 300	-34	000			
is less (see note 2)	2 584					

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Category 3

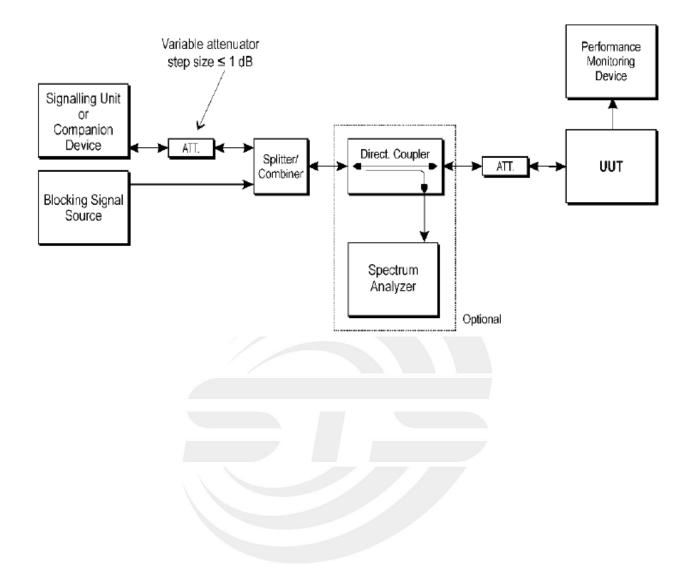
Table 8: Receiver Blocking parameters receiver Category 3 equipment

Wanted signal mean power	Blocking	Blocking		
from companion device (dBm)	signal	signal power	Type of blocking	
(see notes 1 and 3)	frequency	(dBm)	Signal	
(see flotes 1 and 3)	(MHz)	(see note 3)		
(-139 dBm + 10 ×	2 380			
log10(OCBW) + 20 dB) or (-74	2 504	-34	CW	
dBm + 20 dB) whichever is	2 300	-34	Cvv	
less (see note 2)	2 584			

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.


10.2 TEST PROCEDURES

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.11.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.11.2 for the measurement method.

Page 109 of 116 Report No.: STS2205025W01

10.3 TEST SETUP

Shenzhen STS Test Services Co., Ltd.

Report No.: STS2205025W01

10.4 TEST RESULTS

External Antenna

Note: 1. The power more than 10dBm, belong to category 1.

2. Measurement of smallest channel bandwidth and the lowest rate according to EN 300328

V2.2.2, section 5.4.11.1, so, 40MHz mode is not measured.

		802.110, 241				
Wanted signal mean power from companion device (dBm)	Test Channel	Blocking signal frequency (MHz)	Blocking signal power(dBm) CW	PER	Limit	Results
-68	Low	2380		0.39%		
-00	High	2504		0.45%		
		2300		0.38%		
	Low	2330	-34	0.71%	\leqslant	PASS
-74		2360	-34	0.22%	10%	FAGO
		2524		0.52%		
	High	2584		0.25%		
		2674		0.31%		

802.11b, 2412MHz

NOTE 1: OCBW is 14711000Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 111 of 116

Report No.: STS2205025W01

		002.119, 2 4 1				
Wanted signal mean power from companion device (dBm)	Test Channel	Blocking signal frequency (MHz)	Blocking signal power(dBm) CW	PER	Limit	Results
-68	Low	2380		0.48%		
-00	High	2504		0.66%		
		2300		0.53%		
	Low	2330	-34	0.75%	\leqslant	PASS
-74		2360	-34	0.25%	10%	FA00
-74		2524		0.31%		
	High	2584		0.50%		
		2674		0.53%		

802.11g, 2412MHz

NOTE 1: OCBW is 16565000Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 112 of 116

Report No.: STS2205025W01

Wanted signal mean power from companion device (dBm)	Test Channel	Blocking signal frequency (MHz)	Blocking signal power(dBm) CW	PER	Limit	Results
-68	Low	2380		0.41%	≤ 10%	PASS
	High	2504		0.33%		
	Low	2300	-34	0.47%		
-74		2330		0.21%		
		2360		0.33%		
	High	2524		0.37%		
		2584		0.75%		
		2674		0.53%		

802.11n20, 2412MHz

NOTE 1: OCBW is 17753000Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

PCB Antenna

Note: 1. 802.11b power more than 10dBm, belong to category 1.802.11g. 802.11n(HT20), 802.11n(HT40) power more than 0dBm, less than 10dBm, belong to category 2.
2. Measurement of smallest channel bandwidth and the lowest rate according to EN 300328 V2.1.1, section 5.4.11.1, so, 40MHz mode is not measured.

002.110, 24 1210112						
Wanted signal mean power from companion device (dBm)	Test Channel	Blocking signal frequency (MHz)	Blocking signal power(dBm) CW	PER	Limit	Results
-68	Low	2380		0.46%	<i>V</i>	PASS
	High	2504		0.57%		
-74	Low	2300		0.33%		
		2330 2360	-34	0.68%		
			-34	0.10%	10%	PASS
	High	2524		0.59%		
		2584		0.38%		
		2674		0.23%		

802.11b, 2412MHz

NOTE 1: OCBW is 14441000Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 114 of 116

Report No.: STS2205025W01

002.11g, 2 4 12mi12						
Wanted signal mean power from companion device (dBm)	Test Channel	Blocking signal frequency (MHz)	Blocking signal power(dBm) CW	PER	Limit	Results
-68	Low	2380		0.43%	≤ 10%	PASS
	High	2504		0.73%		
-74	Low	2300	-34	0.38%		
		2330		0.65%		
		2360		0.22%		
	High	2524		0.30%		
		2584		0.61%		
		2674		0.53%		

802.11g, 2412MHz

NOTE 1: OCBW is 16675000Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 115 of 116

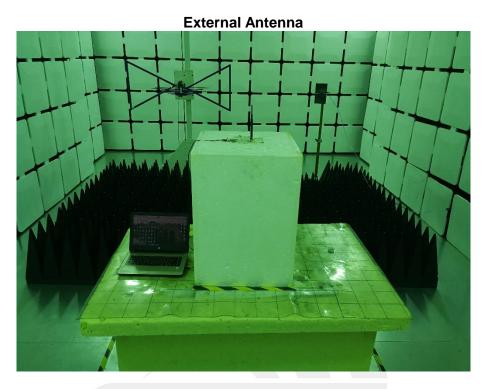
Report No.: STS2205025W01

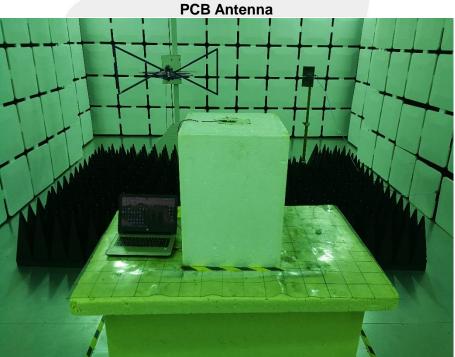
Wanted signal mean power from companion device (dBm)	Test Channel	Blocking signal frequency (MHz)	Blocking signal power(dBm) CW	PER	Limit	Results
-66.49	Low	2300 2380		0.31% 0.20%	_	PASS
			-34		≪ 10%	
	High	2504		0.34%	10%	
		2584		0.32%		
NOTE 1: OCBW is 1782900Hz.						

802.11n20, 2412MHz

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.




Shenzhen STS Test Services Co., Ltd.

Page 116 of 116

Test Setup Photos

* * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.