

EMC TEST REPORT

Report No.: STS2205025E01

S T S

Issued for

WIZnet H.K. Limited

Unit 219, Building 1W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong

Product Name:	WiFi Module
Brand Name:	WIZnet
Model Name:	WizFi360
Series Model:	WizFi360-PA,WizFi360-CON
Test Standard:	ETSI EN 301 489-1 V2.2.3 (2019-11)
	ETSI EN 301 489-17 V3.2.4 (2020-09)

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Page 2 of 36

TEST REPORT CERTIFICATION

Applicant's Name:	WIZnet H.K. Limited
Address:	Unit 219, Building 1W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
Manufacturer's Name:	WIZnet Co., Ltd.
Address:	5F Humax Village,216 Hwangsaeul-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13595 Korea
Product Description	
Product Name:	WiFi Module
Model Name:	WizFi360
Series Model:	WizFi360-PA,WizFi360-CON
Standards	ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-17 V3.2.4 (2020-09)

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of Performance of Tests:	06 June. 2019~18 June. 2019 27 Oct. 2020 ~ 30 Oct. 2020
Date of Issue:	10 May 2022
Test Result	Pass

1

Testing Engineer

Jame. chen

Image: Construction of the construc

(Bovey Yang)

Page 3 of 36

TABLE OF CONTENTS

1. TEST SUMMARY	5
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	8
2.3 DESCRIPTION OF THE TEST SETUP	8
2.4 DESCRIPTION OF THE SUPPORT UNITS	9
2.5 MEASUREMENT INSTRUMENTS LIST	10
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 RADIATED EMISSION MEASUREMENT	14
4. EMC IMMUNITY TEST	24
4.1 GENERAL PERFORMANCE CRITERIA	24
4.2 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)	26
4.3 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMU	NITY TEST
(RS)	30
APPENDIX I- TEST SETUP	33

П

Page 4 of 36

Report No.: STS2205025E01

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents	
00	19 June. 2019	STS1906023E02	ALL	Initial Issue	
00	25 Feb. 2020	STS2002179E01	ALL	Update Product Name and Model Name, Series Models and Model Difference Description	
00	30 Oct. 2020	STS2010375E01	ALL	Updated standard version, radiated Emission and continuous RF electromagnetic field disturbances test data, Applicant's Name/Address and Manufacturer's Name/Address	
00	10 May 2022	STS2205025E01	ALL	Updated Applicant's Address and Manufacturer's Name/Address.	

Shenzhen STS Test Services Co., Ltd.

П

1. TEST SUMMARY

Test procedures according to the technical standards:

ETSI EN 301 489-1 V2.2.3 (2019-03)

ETSI EN 301 489-17 V3.2.4 (2017-03)

EMC Emission				
Standard	Test Item	Limit	Judgment	Remark
	Conducted Emission on AC And Telecom Port 150kHz to 30MHz	Class B	N/A	
EN 55032:2015/A11:2020	Radiated Emission 30MHz to 1000MHz	Class B	PASS	
	Radiated Emission 1GHz to 6GHz	Class B	PASS	NOTE (1)
EMC Immunity				
Section	Test Item	Performance Criteria	Judgment	Remark
EN 61000-4-2:2009	Electrostatic discharges	В	PASS	
EN IEC 61000-4-3:2020	Continuous RF electromagnetic field disturbances	А	PASS	
EN 61000-4-4:2012	Electrical fast transients/burst	В	N/A	
EN 61000-4-5:2014/A1:2017	Surges	В	N/A	
EN 61000-4-6:2014+AC:2015	Continuous induced RF disturbances	А	N/A	
EN 61000-4-11:2004/A1:2017	. Voltage dips and interruptions	B/C/C	N/A	NOTE (2)

Note: (1) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times of the highest frequency or 6 GHz, whichever is less.

(2) Voltage Dip: 100% reduction – Performance Criteria B

Voltage Dip: 30% reduction – Performance Criteria C

- Voltage Interruption: 100% Interruption Performance Criteria C
- (3) "N/A" denotes test is not applicable in this Test Report

Page 6 of 36

1.1 TEST FACTORY

Company Name:	SHENZHEN STS TEST SERVICES CO.,LTD.
Address:	A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China
Telephone:	+86-755 3688 6288
Fax:	+86-755 3688 6277
	FCC test Firm Registration Number: 625569
Registration No.:	IC test Firm Registration Number: 12108A
	A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)	NOTE
STSC01	CISPR 16-4-2	9KHz ~ 150KHz	3.18	
		150 KHz ~ 30MHz	2.70	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)	NOTE
STSC02	CISPR 16-4-2	9KHz ~ 30MHz	2.50	
		30MHz ~ 200MHz	3.43	
		200MHz ~ 1000MHz	3.57	
		1GHz ~ 6 GHz	4.13	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	WiFi Mod	ule	
Brand Name	WIZnet		
Model Name	WizFi360		
Series Model	WizFi360-PA,WizFi360-CON		
Product Differences	1.WizFi36 doesn't ha 2.WizFi36 WizFi360- 3.WizFi360	io-PA has a PCB antenna onboard, WizFi360-CON ave; io-CON has an IPEX antenna connector onboard, PA doesn't have; io-PA has a LED light onboard, WizFi360-CON	
	doesn't have 4.WizFi360 is the same as wizfi360-PA		
Test Sample Number	2010136-1		
Frequency Bands	WLAN	2.4GHz IEEE 802.11b/g/n(HT20): 2412MHz to 2472 MHz 2.4GHz IEEE 802.11n(40MHz): 2422 MHz to 2462 MHz	
Modulation Mode	WLAN	802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM	
Power Source	Input: 3.3 V		
Hardware Version Number	Rev 1.2		
Software Version Number	V1.0.1.2		

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	WLAN

For Radiated Test		
Final Test Mode	Description	
Mode 1	WLAN	

For EMS Test			
Final Test Mode Description			
Mode 1	WLAN		

Note:

1. For radiated emission test, test mode 1 was the worst case and only this mode was presented in this report.

2.3 DESCRIPTION OF THE TEST SETUP

2.4 DESCRIPTION OF THE SUPPORT UNITS

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Necessary accessories						
Item Equipment Mfr/Brand Model/Type No. Length Note							
N/A	N/A	N/A	N/A	N/A	N/A		

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-1	Notebook Adapter	DELL	LA65NS2-01	N/A	N/A
C-1	DC Cable	N/A	N/A	110cm	N/A

Support unito

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

2.5 MEASUREMENT INSTRUMENTS LIST

2.5.1 RADIATED TEST SITE

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
EMI Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
Bi-log Antenna	TESEQ	CBL6111D	34678	2020.10.12	2022.10.11
Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1343	2020.10.12	2022.10.11
Pre-amplifier(1G-18G)	SKET	LNPA-01018G-45	SK2018080901	2020.10.12	2021.10.11
Pre-amplifier(0.1M-3GHz)	EM	EM330	060665	2020.10.12	2021.10.11
Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.10.12	2021.10.11
RE Cable (9K-1G)	N/A	R01	N/A	2020.10.12	2021.10.11
RE Cable (1G-18G)	N/A	R02	N/A	2020.10.12	2021.10.11
Temperature & Humidity	Mieo	HH660	N/A	2020.10.13	2021.10.12
Testing Software	EZ-EMC(Ver.STSLAB-03A1 RE)				

2.5.2 ESD

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until	
Electrostatic Discharge Simulator	KZKUSUI	KES4021	LB003568	2020.10.10	2021.10.09	
Temperature & Humidity	N/A	WS1066	N/A	2020.10.10	2021.10.09	
Testing Software	HA-PC Link Version 3.03					

2.5.3 RS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Power Meter	Agilent	E4419B	QB43312265	2020.10.10	2021.10.09
Power Sensor	Нр	E9300A	US39210170	2020.10.12	2021.10.11
Power Sensor	Нр	E9300A	US39210476	2020.10.12	2021.10.11
Signal Generator	Agilent	N5181A	MY56144718	2020.10.12	2021.10.11
Power Amplifier	MICOTOP	MPA-80-1000 -250	MPA1711489	2020.10.12	2021.10.11
Power Amplifier	MICOTOP	MPA-1000-6000 -100	MPA1904132	2020.10.10	2021.10.09
RS Test Antenna (0.08-1GHz)	SCHWARZBECK	VULP 9118E	000999	N/A	N/A
RS Test Antenna (1-10GHz)	SCHWARZBECK	STLP 9149	000648	N/A	N/A
Universal Radio Communication Tester	R&S	CMU200	109200	2020.10.12	2021.10.21
Audio Analyzer	R&S	UPL	100689	2020.03.05	2021.03.04

П

Shenzhen STS Test Services Co., Ltd.

Page 11 of 36 Report No.: STS2205025E01

Audio Breakthrough Shielding Box	SKET	SB_ABT/C35	N/A	N/A	N/A
Ear Simulator	SKET	AE_ABT/C35	N/A	N/A	N/A
Mouth Simulator	SKET	AM_ABT/C35	N/A	N/A	N/A
1KHz Standard Source	SKET	MSC_ABT/C35	N/A	2020.10.13	2021.10.12
Field Probe	Narda	EP601	611WX80261	2020.10.13	2021.10.12
Temperature & Humidity	Mieo	HH660	N/A	2020.10.13	2021.10.12
Testing Software	EMC-S V1.4.0.53				

Shenzhen STS Test Services Co., Ltd.

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION

(Frequency Range 150KHz-30MHz)

	Class A	(dBuV)	Class B (dBuV)	
	Quasi-peak	Average	Quasi-peak	Average
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *
0.50 -5.0	73.00	60.00	56.00	46.00
5.0 -30.0	73.00	60.00	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Shenzhen STS Test Services Co., Ltd.

Page 13 of 36

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Vertical Reference Ground Plane EUT B0cm ISN B0cm Horizontal Reference Ground Plane

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the following during the testing.

3.1.5 TEST RESULTS

Temperature:	26 ℃	Relative Humidity:	54%
Phase:	L/N	Test Mode:	N/A
Test Voltage:	DC 3.3 From Battery		

Note: DC 3.6V test is not applicable in this test report.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF THE RADIATED EMISSION MEASUREMENT (Below 1000MHz)

	Clas	ss A	Class B		
FREQUENCY (MHz)	At 10m	At 3m	At 10m	At 3m	
	dBuV/m	dBuV/m	dBuV/m	dBuV/m	
30 – 230	40	50	30	40	
230 – 1000	47	57	37	47	

3.2.2 LIMITS OF THE RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class A (at 3	3m) dBuV/m	Class B (at 3m) dBuV/m	
	Peak	Avg	Peak	Avg
1000-3000	76	56	70	50
3000-6000	80	60	74	54

Notes:

- (1) The limit for radiated test was performed in the following: CISPR 32.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).

3.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. EUT as the center to the edge of the auxiliary device, the distance from the maximum edge to the center of the antenna is 3 meters.
- c. The height of antenna is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1GHz.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.2.4 TEST SETUP

Figure C.1 – Measurement distance

(B) Radiated Emission Test Set-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the following during the testing.

3.2.6 TEST RESULTS (30 - 1000 MHz)

Temperature:	24.7℃	Relative Humidity:	46%
Phase:	Horizontal	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From PC	Test Date:	2020.10.27

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	104.5361	42.11	-19.80	22.31	40.00	-17.69	QP
2	145.3506	44.00	-18.38	25.62	40.00	-14.38	QP
3	172.5988	51.76	-20.13	31.63	40.00	-8.37	QP
4	227.6906	48.59	-18.89	29.70	40.00	-10.30	QP
5	533.8321	40.40	-9.77	30.63	47.00	-16.37	QP
6	948.7610	37.79	-2.18	35.61	47.00	-11.39	QP

Remark:

1. All readings are Quasi-Peak

2. Margin = Result (Result = Reading + Factor)–Limit

3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

Temperature:	24.7℃	Relative Humidity:	46%
Phase:	Vertical	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From PC	Test Date:	2020.10.27

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	42.8998	49.25	-18.07	31.18	40.00	-8.82	QP
2	172.5988	55.84	-20.13	35.71	40.00	-4.29	QP
3	414.7223	39.67	-12.60	27.07	47.00	-19.93	QP
4	531.9635	43.92	-9.93	33.99	47.00	-13.01	QP
5	605.6592	42.15	-8.62	33.53	47.00	-13.47	QP
6	1000.0000	35.34	-2.19	33.15	47.00	-13.85	QP

Remark:

1. All readings are Quasi-Peak

2. Margin = Result (Result = Reading + Factor)-Limit

3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

Temperature:	24.7℃	Relative Humidity:	46%
Phase:	Horizontal	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From PC	Test Date:	2020.10.27

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1080.000	47.58	-3.70	43.88	70.00	-26.12	peak
2	1080.000	40.09	-3.70	36.39	50.00	-13.61	AVG
3	2550.000	45.09	-0.43	44.66	70.00	-25.34	peak
4	2550.000	38.29	-0.43	37.86	50.00	-12.14	AVG
5	3570.000	44.78	2.82	47.60	74.00	-26.40	peak
6	3570.000	37.98	2.82	40.80	54.00	-13.20	AVG
7	4285.000	43.71	4.57	48.28	74.00	-25.72	peak
8	4285.000	36.12	4.57	40.69	54.00	-13.31	AVG
9	4780.000	43.18	5.40	48.58	74.00	-25.42	peak
10	4780.000	36.49	5.40	41.89	54.00	-12.11	AVG
11	5645.000	44.31	7.51	51.82	74.00	-22.18	peak
12	5645.000	36.89	7.51	44.40	54.00	-9.60	AVG

Remark:

1. All readings are Quasi-Peak

2. Margin = Result (Result =Reading + Factor)–Limit

3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

Temperature:	24.7℃	Relative Humidity:	46%
Phase:	Vertical	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From PC	Test Date:	2020.10.27

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1290.000	46.65	-3.04	43.61	70.00	-26.39	peak
2	1290.000	39.10	-3.04	36.06	50.00	-13.94	AVG
3	2010.000	45.91	-1.12	44.79	70.00	-25.21	peak
4	2010.000	37.57	-1.12	36.45	50.00	-13.55	AVG
5	2655.000	45.80	0.29	46.09	70.00	-23.91	peak
6	2655.000	38.38	0.29	38.67	50.00	-11.33	AVG
7	4100.000	43.95	4.45	48.40	74.00	-25.60	peak
8	4100.000	36.38	4.45	40.83	54.00	-13.17	AVG
9	5015.000	43.79	6.12	49.91	74.00	-24.09	peak
10	5015.000	36.53	6.12	42.65	54.00	-11.35	AVG
11	5495.000	43.76	7.52	51.28	74.00	-22.72	peak
12	5495.000	35.70	7.52	43.22	54.00	-10.78	AVG

Remark:

1. All readings are Quasi-Peak

2. Margin = Result (Result = Reading + Factor)–Limit

3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

3.2.7 TEST RESULT (1000 - 6000 MHz)

Temperature:	27.8 ℃	Relative Humidity:	70%
Phase:	Horizontal	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From Battery	Model:	WizFi360-PA (1#)

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	1545.000	48.92	-7.58	41.34	70.00	-28.66	peak
2	1545.000	39.86	-7.58	32.28	50.00	-17.72	AVG
3	2480.000	56.43	-3.52	52.91	70.00	-17.09	peak
4	2480.000	51.69	-3.52	48.17	50.00	-1.83	AVG
5	3660.000	43.16	0.64	43.80	74.00	-30.20	peak
6	3660.000	36.96	0.64	37.60	54.00	-16.40	AVG
7	4155.000	44.48	1.92	46.40	74.00	-27.60	peak
8	4155.000	37.39	1.92	39.31	54.00	-14.69	AVG
9	4885.000	43.60	3.32	46.92	74.00	-27.08	peak
10	4885.000	37.57	3.32	40.89	54.00	-13.11	AVG
11	5605.000	43.67	5.43	49.10	74.00	-24.90	peak
12	5605.000	37.97	5.43	43.40	54.00	-10.60	AVG

Remark:

- 1. All readings are Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

Temperature:	27.8 ℃	Relative Humidity:	70%
Phase:	Vertical	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From Battery	Model:	WizFi360-PA (1#)

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	1425.000	47.51	-7.90	39.61	70.00	-30.39	peak
2	1425.000	40.31	-7.90	32.41	50.00	-17.59	AVG
3	2405.000	56.32	-3.66	52.66	70.00	-17.34	peak
4	2405.000	48.72	-3.66	45.06	50.00	-4.94	AVG
5	3025.000	45.15	-2.23	42.92	74.00	-31.08	peak
6	3025.000	38.24	-2.23	36.01	54.00	-17.99	AVG
7	3975.000	45.00	1.16	46.16	74.00	-27.84	peak
8	3975.000	37.96	1.16	39.12	54.00	-14.88	AVG
9	5085.000	42.53	4.49	47.02	74.00	-26.98	peak
10	5085.000	36.06	4.49	40.55	54.00	-13.45	AVG
11	5810.000	44.45	5.85	50.30	74.00	-23.70	peak
12	5810.000	37.68	5.85	43.53	54.00	-10.47	AVG

Remark:

2. Margin = Result (Result = Reading + Factor)-Limit

3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

Temperature:	24.8℃	Relative Humidity:	65%
Phase:	Horizontal	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From Battery	Model:	WizFi360-PA (2#)

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	1705.000	47.80	-7.42	40.38	70.00	-29.62	peak
2	1705.000	41.77	-7.42	34.35	50.00	-15.65	AVG
3	2400.000	54.27	-3.67	50.60	70.00	-19.40	peak
4	2400.000	47.73	-3.67	44.06	50.00	-5.94	AVG
5	3595.000	42.17	0.37	42.54	74.00	-31.46	peak
6	3595.000	37.59	0.37	37.96	54.00	-16.04	AVG
7	4610.000	44.20	2.79	46.99	74.00	-27.01	peak
8	4610.000	37.97	2.79	40.76	54.00	-13.24	AVG
9	5130.000	44.26	4.57	48.83	74.00	-25.17	peak
10	5130.000	38.14	4.57	42.71	54.00	-11.29	AVG
11	5725.000	43.80	5.81	49.61	74.00	-24.39	peak
12	5725.000	36.64	5.81	42.45	54.00	-11.55	AVG

Remark:

2. Margin = Result (Result = Reading + Factor)-Limit

3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

Temperature:	24.8℃	Relative Humidity:	65%
Phase:	Vertical	Test Mode:	Mode 1
Test Voltage:	DC 3.3 From Battery	Model:	WizFi360-PA (2#)

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	1710.000	45.61	-7.41	38.20	70.00	-31.80	peak
2	1710.000	39.00	-7.41	31.59	50.00	-18.41	AVG
3	2405.000	54.07	-3.66	50.41	70.00	-19.59	peak
4	2405.000	46.57	-3.66	42.91	50.00	-7.09	AVG
5	3225.000	42.89	-2.15	40.74	74.00	-33.26	peak
6	3225.000	35.96	-2.15	33.81	54.00	-20.19	AVG
7	3820.000	43.03	0.93	43.96	74.00	-30.04	peak
8	3820.000	36.52	0.93	37.45	54.00	-16.55	AVG
9	4505.000	44.46	2.48	46.94	74.00	-27.06	peak
10	4505.000	37.31	2.48	39.79	54.00	-14.21	AVG
11	5115.000	45.42	4.58	50.00	74.00	-24.00	peak
12	5115.000	37.41	4.58	41.99	54.00	-12.01	AVG

Remark:

2. Margin = Result (Result = Reading + Factor)-Limit

3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Shenzhen STS Test Services Co., Ltd.

4. EMC IMMUNITY TEST

4.1 GENERAL PERFORMANCE CRITERIA

4.1.1 PERFORMANCE CRITERIA (WLAN)

According to ETSI EN 301 489-17 standard, the general performance criteria as following:

Criteria	During the test	After the test
A	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended Shall be no degradation of performance (see note 2) Shall be no loss of function Shall be no loss of stored data or user programmable functions
В	May show loss of function (one or more) May show degradation of performance (see note 1) No unintentional transmissions	Functions shall be self-recoverable Shall operate as intended after recovering Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions
С	May be loss of function (one or more)	Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)

NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100ms and voltage interruptions of 5 000ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR

The performance criteria B shall apply, except for voltage dips of 100ms and voltage interruptions of 5 000ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CT

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

4.1.2 GENERAL PERFORMANCE CRITERIA TEST SETUP

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

4.2.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-2		
Discharge Impedance:	330 ohm / 150 pF		
Required Performance:	В		
	Air Discharge ∺ 2kV/4kV/8kV (Direct)		
	Contact Discharge : 2kV/4kV (Direct/Indirect)		
Polarity:	Positive & Negative		
Number of Discharge:	Air Discharge: min. 20 times at each test point		
	Contact Discharge: min. 200 times in total		
Discharge Mode:	Single Discharge		
Discharge Period:	1 second minimum		

4.2.2 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manners:

a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation

The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.

The time interval between two successive single discharges was at least 1 second.

The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.

Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.

Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

Vertical Coupling Plane (VCP):

The coupling plane of dimensions 0.5m x 0.5m, is placed parallel to and positioned at a distance 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge. Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

- b. Air discharges at insulation surfaces of the EUT.
 - It was at least ten single discharges with positive and negative at the same selected point.

4.2.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k Ω total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 0.8-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1 meter thickness. The GRP was consisted of a sheet of aluminum that is at least 0.25mm thick, and extended at least 0.5 meters from the EUT on all sides.

4.2.4 TEST RESULT

Temperature:	26 ℃	Relative Humidity:	50%
Pressure:	1015.8hPa	Test Voltage:	DC 3.3V
Test Mode:	Mode 1	Test Date:	2020.10.28

Discharg e Level	Polarity	Test Points	Contact Discharge	Air Discharge	Criterion	Test Result	
4	+/-	HCP/VCP	Note1	NA	В	А	
4	+/-	Green Dot	Note1	NA	В	А	
Note: The Red Gree	Note: The EUT function was correct during the test. Red Dot —Air Discharged Green Dot —Contact Discharged						

Shenzhen STS Test Services Co., Ltd.

Page 29 of 36

Report No.: STS2205025E01

The Photo for Discharge Points of EUT

Shenzhen STS Test Services Co., Ltd.

4.3 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

4.3.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-3
Required Performance:	A
Frequency Range:	80 MHz - 6000 MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.5 m
Dwell Time:	1.5x 10 ⁻³ decade/s

4.3.2 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.

The other condition need as following manners:

- a. The frequency range is swept from 80 MHz to 6000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- b. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- c. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

Shenzhen STS Test Services Co., Ltd.

4.3.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

4.3.4 TEST RESULTS

Temperature:	24.1 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.3V	Test Mode:	Mode 1
Test Mode:	Mode 1	Test Date:	2020.10.28

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observation	Perform. Criteria	Results	Judgment
80~6000	3 V/m (rms) H / V AM Modulated 1000Hz, 80%	3 V/m (rms)	Front Rear	07.05			54.00
		Left	CI,CK	A	A	PASS	
			Right				

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

Note:

- 1) N/A denotes test is not applicable in this test report.
- 2) Criteria A: There was no change operated with initial operating during the test.
- 3) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 4) Criteria C: The system shut down during the test.

Page 33 of 36

APPENDIX I- TEST SETUP

RE (30 - 1000 MHz)

RE (1000 - 6000 MHz)

Shenzhen STS Test Services Co., Ltd.

RS (80 - 1000 MHz)

RS (1000 - 6000 MHz)

Shenzhen STS Test Services Co., Ltd.

Page 35 of 36

Report No.: STS2205025E01

ESD

RS (80 - 1000 MHz)

Shenzhen STS Test Services Co., Ltd.

Page 36 of 36

RS (1000 - 6000 MHz)

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.