

Application Note – Interrupt v1.0.0 2 / 15

How to use Interrupt

Application Note

Version 1.0.0

© 2025 WIZnet Co., Ltd. All Rights Reserved.

For more information, visit our website at http://www.wiznet.io

http://www.wiznet.io/

Application Note – Interrupt v1.0.0 3 / 15

Contents

1. Interrupt configuration ... 6

1.1 Registers related to interrupt. .. 6

1.2 Operation of INTn ... 6

1.3 Common interrupt .. 7

1.4 SOCKET Interrupt .. 7

1.5 SOCKET-less Command Interrupt .. 8

2. HOST-side Interrupt Handling .. 10

2.1 HOST-side Interrupt Configuration ... 10

2.2 Packet Receive Interrupt Example ... 10

2.3 SOCKET-less Command Interrupt Example .. 11

2 ETC ... 13

3.1 Precautions when using the interrupt ... 13

3.2 Precautions when using the RTOS .. 14

3 Document Revision History .. 15

Application Note – Interrupt v1.0.0 4 / 15

List of Figures

Figure 1 W6300 INTn Pin .. 5

Figure 2 Interrupt and INTPTMR register ... 7

Figure 3 QSPI Frame .. 13

Figure 4 Behavior when an interrupt or task switching occurs 14

List of Tables

Table 1 Interrupt related registers .. 6

Application Note – Interrupt v1.0.0 5 / 15

Introduction

W6300 provides 1 Interrupt Pin (INTn) and HOST can know when an Ethernet

Communication Event has occurred with INTn. When an Ethernet Communication

Processing Event (IP Collision, WOL Magic Packet Reception, Data Transmission, Reception

for each SOCKET, etc.) occurs, the INTn is asserted low.

Figure 1 W6300 INTn Pin

INTn is enabled by default and it can be configured by setting IEN Bit in SYCR1 (System

Config Register 1).

Application Note – Interrupt v1.0.0 6 / 15

1. Interrupt configuration

1.1 Registers related to interrupt.

Table 1 Interrupt related registers

Symbol Address Offset Description

SYCR1 0x2005 System Config Register 1

IR 0x2100 Interrupt Register

SIR 0x2101 SOCKET Interrupt Register

SLIR 0x2102 SOCKET-less Interrupt Register

IMR 0x2104 Interrupt Mask Register

IRCLR 0x2104 IR Clear Register

SIMR 0x2114 SOCKET Interrupt Mask Register

SLIMR 0x2124 SOCKET-less Interrupt Mask Register

SLIRCLR 0x2128 SLIR Clear Register

INTPTMR 0x41C5-0x41C6 Interrupt Pending Time Register

Sn_IR 0x0020 SOCKET n Interrupt Register

Sn_IMR 0x0024 SOCKET n Interrupt Mask Register

Sn_IRCLIR 0x0028 Sn_IR Clear Register

Table 1 shows the Registers that associated with Interrupt functions. Please see the W6300

Datasheet for the detail description of each Register. There are four Types of Interrupt

Registers. First is IR (Interrupt Register). Interrupt Register describes Event Occurrence.

Second is IMR (Interrupt Mask Register). IMR Bit corresponds to 1:1 to IR Bit. If the

corresponding IMR Bit is set to ‘1’, INTn is asserted to Low when the corresponding Event

occurs. Lastly, there is SYCR1 (Mode Register2) that enables and disables the INTn. INTn

can be asserted to Low if the SYCR1 [IEN] is set to ‘1’ when an Interrupt occurs.

1.2 Operation of INTn

The INTn indicates to HOST whether an Event occurred. INTn is asserted to Low when Event

occurs. In this time, if the internal counter set by INTPTMR is not 0, INTn is not asserted

to Low until the internal counter becomes 0. When the Event Processing in HOST is

completed, the Interrupt can be cleared by setting the corresponding IR Bit to ‘1’. Then

INTn is de-asserted to High.

Application Note – Interrupt v1.0.0 7 / 15

Figure 2 Interrupt and INTPTMR

1.3 Common interrupt

W6300 can generate MAGIC Packet Receive Interrupt, IP Conflict Interrupt, Port

Unreachable Interrupt and PADT/LCPT Receive Interrupt via IR. These Interrupts are

enabled by setting each Bit in IMR. If IMR Bit is not set to ‘1’, INTn cannot be asserted to

Low even if IR Bit changes to ‘1’.

For example, for IP Conflict Interrupts, follow the procedure below.

 Register Configuration

{

start:

SYCR1 |= 1<<7; // enable INTn (SYCR1[IEN] == 1)

IMR |= 1<<2; // enable CONFLICT Interrupt Mask Register

end

}

 IP Conflict Error occurred (In HOST’s Interrupt Handler)

{

start:

if(IR && 1<<2) //check IR[CONFLICT] Interrupt flag

//Do Something!

IRCLR |= 1<<2; //clear CONFLICT Interrupt flag

end

}

1.4 SOCKET Interrupt

W6300 provides an Interrupt to detect the Status Event of each SOCKET. This Interrupt

Sn_IR is enabled by setting the corresponding bit in Sn_IMR to ‘1’. If a SOCKET Event that

configured in Sn_IMR occurs, the corresponding bit in Sn_IR and Sn_INT Bit in SIR are set to

‘1’. In this time, if IEN Bit in SYCR1 or corresponding Interrupt Mask bit in SIMR is disabled,

INTn cannot be asserted to Low. When INTn is asserted to Low by a SOCKET Event, HOST

Application Note – Interrupt v1.0.0 8 / 15

must figure out which SOCKET generates the Event through SIR and which Interrupt

occurred through Sn_IR.

For example, if HOST want to handle Receive Interrupt of SOCKET 0, HOST must follow the

procedure as follows.

 Register Configuration

{

start:

SYCR1 |= 1<<7; //enable SYCR1[IEN] – enable INTn

IMR |= 1<<0; // enable IMR[S0_INT] – enable SOCKET 0 Interrupt

S0_IMR |= 1<<2; // enable RECV Interrupt Mask Bit

end

}

 RECV Event occurred (HOST Interrupt Handler that connected to INTn)

{

start:

if(IR && 1<<0) // SOCKET 0 Interrupt occurs?

if(S0_IR && 1<<2) // RECV Interrupt occurs?

//Do Something!

IR |= 1<<0; // clear SOCKET 0 Interrupt Bit

S0_IRCLR |= 1<<2; //clear SOCKET 0 RECV Interrupt Bit

end

}

There are 5 interrupts for the socket status. Those are SENDOK, TIMEOUT, RECV, DISCO,

CON. For details, refer to W6300 Datasheet.

1.5 SOCKET-less Command Interrupt

W6300 has functions to transmit ND(Neighbor Discovery), PING and ARP Packet, called

SOCKET-less Command. SOCKET-less Command generates kinds of Interrupt through SLIR

(SOCKET-less Interrupt Register) - RA, RS, NS, PING6, ARP6, PING4, ARP4, TOUT. This SLIR

is enabled by setting the corresponding bit in SLIMR to ‘1’. When a SOCKET-less Event

occurs, the corresponding bit in SLIR is set to ‘1’ and INTn is asserted to Low.

For example, if HOST want handle PING Interrupt, HOST must follow the procedure as

follows.

 Register Configuration

Application Note – Interrupt v1.0.0 9 / 15

{

start:

SYCR1 |= 1<<7; //enable SYCR1[IEN] – enable INTn

SLIMR |= 1<<5; //enable SLIMR[PING4] – enable PING4 Interrupt

end

}

 PING Interrupt Handler

{

start:

if(SLIR && 1<<5) //PING Interrupt ?

//Do Something!

SLIRCLR |= 1<<5; //clear PING4 Interrupt flag

end

}

For details, refer to the W6300 Datasheet.

Application Note – Interrupt v1.0.0 10 / 15

2. HOST-side Interrupt Handling

2.1 HOST-side Interrupt Configuration

HOST refers to MCU (Micro Controller Unit) connected to W6300. The MCU has components

that can detect pin state or pin state changes called External Interrupt unit. To configure

the External Interrupt, Hardware Initialization and Interrupt Handler are required. The

Interrupt Handler is the Software that is executed in the MCU when an Event occurs on the

W6300.

2.2 Packet Receive Interrupt Example

This example uses STM32F1XX MCU and ioLibrary. (Official library for WIZnet Ethernet IC)

Assume that INTn signal connected to the GPIOB 1 pin of the STM32F1XX and RECV Interrupt

enabled

 Initialize External Interrupt Hardware Unit

{

void InitializeExternalInterrupt(void)

{

 GPIO_InitTypeDef GPIO_InitStructure;

 EXTI_InitTypeDef EXTI_InitStructure;

 /* GPIO initialize */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_Init(GPIOB, & GPIO_InitStructure);

 /* External interrupt initialize */

 GPIO_EXTILineConfig(GPIOB_PortSourceGPIOB, GPIO_PinSource1);

 EXTI_InitStructure.EXTI_Line = EXTI_Line8;

 EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Trigger_Falling;

 EXTI_InitStructure.EXTI_LineCmd = ENABLE;

 EXTI_Init(&EXTI_InitStructure);

}

}

 W6300 Interrupt Configuration

{

Application Note – Interrupt v1.0.0 11 / 15

SYCR1 |= 1<<7; // SYCR1[6] IEN Bit – enable INTn

SIMR |= 1<<0; // IMR[0]S0_INT Bit – enable SOCKET 0 Interrupt

}

 Interrupt Handler

{

void EXTI1_IRQHandler(void)

{

 //setSYCR1(getSYCR1() & ~(1<<7)); //Global Interrupt Disable

 if(EXTI_GetITStatus(EXTI_Line1) == SET) //check the Interrupt

 {

 //(1)Set Global Interrupt flag

 interruptflag = 1;

 setSn_IRCLR(0xff); //clear SOCKET n Interrupt

 }

 //clear External Interrupt flag

 EXTI_ClearFlag(EXTI_Line1);

}

(1) It is not recommended to execute too many commands in the interrupt handler. This

can cause serious problem to your system. Just sets the flag in the interrupt handler and

executes the functions outside the interrupt handler.

}

2.3 SOCKET-less Command Interrupt Example

This example uses STM32F1XX MCU and ioLibrary. (Official library for WIZnet Ethernet IC)

Assume that INTn connected to the GPIOB 1 pin of the STM32F1XX and RECV Interrupt

enabled.

External Interrupt Configuration is the same with 2.2 Packet Receive Interrupt Example.

 Interrupt Handler

{

void EXTI1_IRQHandler(void)

{

 //setSYCR1(getSYCR1() & ~(1<<7)); //Global Interrupt Disable

 if(EXTI_GetITStatus(EXTI_Line1) == SET) //check the Interrupt

 {

Application Note – Interrupt v1.0.0 12 / 15

 //(1)Set Global Interrupt flag

 interruptflag = 1;

 setSLIRCLR(0xff); //clear SOCKET Interrupt

 }

 //clear External Interrupt flag

 EXTI_ClearFlag(EXTI_Line1);

 }

(1) It is not recommended to execute too many commands in the interrupt handler. This

can cause serious problem to your system. Just sets the flag in the interrupt handler and

executes the functions outside the interrupt handler.

}

Application Note – Interrupt v1.0.0 13 / 15

3. ETC

3.1 Precautions when using the interrupt

The read/write operation of the W6300 is composed of a single communication frame (refer

to the External Interface section of the datasheet).

This frame is transmitted in the following order: Instruction → Address → Dummy → Data,

and this sequence must be preserved to ensure correct access. In particular, when

operating in QSPI Quad mode,

Figure 3 QSPI Frame

When interrupts are enabled, special care must be taken because the frame transmission

can be interrupted in the middle of a transaction. For example, if an interrupt occurs while

the MCU is transmitting a frame to read data from the W6300, the MCU will suspend the

current operation and branch to the interrupt handler. If the handler accesses W6300

registers or accesses another IC that shares the same SPI/QSPI bus, the ongoing W6300

frame becomes invalid.

To prevent this issue, interrupts that access shared resources must be blocked until the

current frame transmission is fully completed. In other words, the frame transmission must

be treated as an atomic operation, and appropriate protection mechanisms should be

implemented to prevent interrupt-driven access during the minimum unit in which the

frame must remain intact.

(REF :

https://github.com/Wiznet/ioLibrary_Driver/blob/f6406a7fd2e9e527f702320929dc751ecd5b707a/Ethernet/W6300

/w6300.c#L63)

Application Note – Interrupt v1.0.0 14 / 15

3.2 Precautions when using the RTOS

Using the RTOS may cause the same Problem in 3.1 Precautions when using the interrupt.

If the Task switched in the middle of a Frame Operation and the same resource is used, the

Frame may be corrupted. For prevent this, Task switching of RTOS must be stopped while

the Frame is in Progress. Or Mutex, Semaphore Function of the RTOS must be used.

Figure 4 Behavior when an interrupt or task switching occurs

Application Note – Interrupt v1.0.0 15 / 15

4. Document Revision History

Version Date Descriptions

Ver. 1.0.0 Dec, 2025 Initial Release

Copyright Notice
Copyright 2025 WIZnet Co., Ltd. All Rights Reserved.

Technical support : https://maker.wiznet.io/forum

Sales & Distribution: sales@wiznet.io

For more information, visit our website at http://www.wiznet.io

https://maker.wiznet.io/forum
mailto:sales@wiznet.co.kr
http://www.wiznet.io/

